Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Medicina (Kaunas) ; 59(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36676743

ABSTRACT

Background: Medical image segmentation is more complicated and demanding than ordinary image segmentation due to the density of medical pictures. A brain tumour is the most common cause of high mortality. Objectives: Extraction of tumorous cells is particularly difficult due to the differences between tumorous and non-tumorous cells. In ordinary convolutional neural networks, local background information is restricted. As a result, previous deep learning algorithms in medical imaging have struggled to detect anomalies in diverse cells. Methods: As a solution to this challenge, a deep convolutional generative adversarial network for tumour segmentation from brain Magnetic resonance Imaging (MRI) images is proposed. A generator and a discriminator are the two networks that make up the proposed model. This network focuses on tumour localisation, noise-related issues, and social class disparities. Results: Dice Score Coefficient (DSC), Peak Signal to Noise Ratio (PSNR), and Structural Index Similarity (SSIM) are all generally 0.894, 62.084 dB, and 0.88912, respectively. The model's accuracy has improved to 97 percent, and its loss has reduced to 0.012. Conclusions: Experiments reveal that the proposed approach may successfully segment tumorous and benign tissues. As a result, a novel brain tumour segmentation approach has been created.


Subject(s)
Brain Neoplasms , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Brain Neoplasms/diagnostic imaging , Neural Networks, Computer , Algorithms , Tomography, X-Ray Computed , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL