Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37514439

ABSTRACT

In recent years, there has been a growing demand for biocompatible medical devices on the microscale. However, the manufacturing of certain microfeatures has posed a significant challenge. To address this limitation, a new process called ultrasonic injection molding or ultrasonic molding (USM) has emerged as a potential solution. In this study, we focused on the production of a specific microdevice known as Hem-O-Lok, which is designed for ligation and tissue repair during laparoscopic surgery. Utilizing USM technology, we successfully manufactured the microdevice using a nonabsorbable biopolymer that offers the necessary flexibility for easy handling and use. To ensure high-quality microdevices, we extensively investigated various processing parameters such as vibration amplitude, temperature, and injection velocity. Through careful experimentation, we determined that the microdevice achieved optimal quality when manufactured under conditions of maximum vibrational amplitude and temperatures of 50 and 60 °C. This conclusion was supported by measurements of critical microfeatures. Additionally, our materials characterization efforts revealed the presence of a carbonyl (C=O) group resulting from the thermo-oxidation of air in the plasticizing chamber. This finding contributes to the enhanced thermal stability of the microdevices within a temperature range of 429-437 °C.

2.
Polymers (Basel) ; 15(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38231890

ABSTRACT

The mechanical behaviors of three distinct lattice structures-Diamond, Gyroid, and Schwarz-synthesized through vat polymerization, were meticulously analyzed. This study aimed to elucidate the intricacies of these structures in terms of their stress-strain responses, energy absorption, and recovery characteristics. Utilizing the described experiments and analytical approaches, it was discerned, via the described experimental and analytical procedure, that the AM lattices showcased mechanical properties and stress-strain behaviors that notably surpassed theoretical predictions, pointing to substantial disparities between conventional models and experimental outcomes. The Diamond lattice displayed superior stiffness with higher average loading and unloading moduli and heightened energy absorption and dissipation rates, followed by the Gyroid and Schwarz lattices. The Schwarz lattice showed the most consistent mechanical response, while the Diamond and Gyroid showed capabilities of reaching larger strains and stresses. All uniaxial cyclic compressive tests were performed at room temperature with no dwell times. The efficacy of hyper-elastic-graded models significantly outperformed projections offered by traditional Ashby-Gibson models, emphasizing the need for more refined models to accurately delineate the behaviors of additively manufactured lattices in advanced engineering applications.

3.
Materials (Basel) ; 15(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36234331

ABSTRACT

Hybrid additive manufacturing processes involve the use of different manufacturing techniques to fabricate net shape or near-net shape parts, with enhanced capabilities of heat dissipation, such as those needed in conformal molding, or requiring internal cooling systems, such as, for example, those seen in turbine blades, and for developing other components demanding free form fabrication methods [...].

4.
Micromachines (Basel) ; 11(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138263

ABSTRACT

In this paper, we characterized an assortment of photopolymers and stereolithography processes to produce 3D-printed molds and polydimethylsiloxane (PDMS) castings of micromixing devices. Once materials and processes were screened, the validation of the soft tooling approach in microfluidic devices was carried out through a case study. An asymmetric split-and-recombine device with different cross-sections was manufactured and tested under different regime conditions (10 < Re < 70). Mixing performances between 3% and 96% were obtained depending on the flow regime and the pitch-to-depth ratio. The study shows that 3D-printed soft tooling can provide other benefits such as multiple cross-sections and other potential layouts on a single mold.

5.
Materials (Basel) ; 13(17)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872614

ABSTRACT

Additive manufacturing (AM) is the term for a number of processes for joining materials to build physical components from a digital 3D model. AM has multiple advantages over other construction techniques, such as freeform, customization, and waste reduction. However, AM components have been evaluated by destructive and non-destructive testing and have shown mechanical issues, such as reduced resistance, anisotropy and voids. The build direction affects the mechanical properties of the built part, including voids of different characteristics. The aim of this work is an extended analysis of void shape by means of X-ray computed tomography (CT) applied to fused deposition modeling (FDM) samples. Furthermore, a relation between the tensile mechanical properties and digital void measurements is established. The results of this work demonstrate that void characteristics such as quantity, size, sphericity and compactness show no obvious variations between the samples. However, the angle between the main void axis and the mechanical load axis α shows a relation for FDM components: when its mean value µ(α) is around 80 (degrees) the yield strength and Young's modulus are reduced. These results lead to the formulation of a novel criterion that predicts the mechanical behavior of AM components.

6.
Materials (Basel) ; 12(6)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30893894

ABSTRACT

In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37⁻21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79⁻16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.

7.
Materials (Basel) ; 11(12)2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30551631

ABSTRACT

In this work, we assess the effects of sterilization in materials manufactured using additive manufacturing by employing a sterilization technique used in the food industry. To estimate the feasibility of the hydrostatic high-pressure (HHP) sterilization of biomedical devices, we have evaluated the mechanical properties of specimens produced by commercial 3D printers. Evaluations of the potential advantages and drawbacks of Fused Deposition Modeling (FDM), Digital Light Processing (DLP) technology, and Stereolithography (SLA) were considered for this study due to their widespread availability. Changes in mechanical properties due to the proposed sterilization technique were compared to values derived from the standardized autoclaving methodology. Enhancement of the mechanical properties of samples treated with Hydrostatic high-pressure processing enhanced mechanical properties, with a 30.30% increase in the tensile modulus and a 26.36% increase in the ultimate tensile strength. While traditional autoclaving was shown to systematically reduce the mechanical properties of the materials employed and damages and deformation on the surfaces were observed, HHP offered an alternative for sterilization without employing heat. These results suggest that while forgoing high-temperature for sanitization, HHP processing can be employed to take advantage of the flexibility of additive manufacturing technologies for manufacturing implants, instruments, and other devices.

8.
Materials (Basel) ; 11(12)2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30551659

ABSTRACT

This paper focuses on investigating the residual stress values associated with a part fabricated by Selective Laser Melting technology (SLM) when this is subjected further to forces on single point incremental forming (SPIF) operation of variable wall angle. The residual stresses induced by the SLM manufacturing process on the fabricated AlSi10Mg metallic sheets, as well as those produced during their forming SPIF operation were determined by X-ray diffraction (XRD) measurements. Significant residual stress levels of variation, positive or negative, along the metallic sample were observed because of the bending effects induced by the SPIF processes. It is also shown how the wall thickness varies along the additive manufactured SPIFed part as well as the morphology of the melting pools as a function of the deformation depth.

9.
Micromachines (Basel) ; 9(10)2018 Sep 24.
Article in English | MEDLINE | ID: mdl-30424418

ABSTRACT

Magnesium alloys are of increasing interest in the medical industry due to their biodegradability properties and better mechanical properties as compared to biodegradable polymers. Fiber laser cutting of AZ31 magnesium alloy tubes was carried out to study the effect of cutting conditions on wall surface roughness and back-wall dross. During the experiments, an argon gas chamber was adapted in order to avoid material reactivity with oxygen and thus better control the part quality. A surface response methodology was applied to identify the significance of pulse overlapping and pulse energy. Our results indicate minimum values of surface roughness (Ra < 0.7 µm) when the spot overlapping is higher than 50%. A back-wall dross range of 0.24% to 0.94% was established. In addition, a reduction in back-wall dross accumulations was obtained after blowing away the dross particles from inside the tube using an argon gas jet, reaching values of 0.21%. Laser cutting experimental models show a quadratic model for back-wall dross related with the interaction of the pulse energy, and a linear model dependent on pulse overlapping factor for surface roughness.

10.
Micromachines (Basel) ; 9(1)2017 Dec 26.
Article in English | MEDLINE | ID: mdl-30393282

ABSTRACT

Laser cutting is a key technology for the medical devices industry, providing the flexibility, and precision for the processing of sheets, and tubes with high quality features. In this study, extensive experimentation was used to evaluate the effect of fiber laser micro-cutting parameters over average surface roughness ( R a ) and back wall dross ( D bw ) in AISI 316L stainless steel miniature tubes. A factorial design analysis was carried out to investigate the laser process parameters: pulse frequency, pulse width, peak power, cutting speed, and gas pressure. A real laser beam radius of 32.1 µm was fixed in all experiments. Through the appropriate combination of process parameters (i.e., high level of pulse overlapping factor, and pulse energy below 32 mJ) it was possible to achieve less than 1 µm in surface roughness at the edge of the laser-cut tube, and less than 3.5% dross deposits at the back wall of the miniature tube.

11.
Appl Bionics Biomech ; 2016: 7149182, 2016.
Article in English | MEDLINE | ID: mdl-27578960

ABSTRACT

This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material). Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated.

12.
Sensors (Basel) ; 16(5)2016 May 16.
Article in English | MEDLINE | ID: mdl-27196904

ABSTRACT

Despite the copious amount of research on the design and operation of micromixers, there are few works regarding manufacture technology aimed at implementation beyond academic environments. This work evaluates the viability of xurography as a rapid fabrication tool for the development of ultra-low cost microfluidic technology for extreme Point-of-Care (POC) micromixing devices. By eschewing photolithographic processes and the bulkiness of pumping and enclosure systems for rapid fabrication and passively driven operation, xurography is introduced as a manufacturing alternative for asymmetric split and recombine (ASAR) micromixers. A T-micromixer design was used as a reference to assess the effects of different cutting conditions and materials on the geometric features of the resulting microdevices. Inspection by stereographic and confocal microscopy showed that it is possible to manufacture devices with less than 8% absolute dimensional error. Implementation of the manufacturing methodology in modified circular shape- based SAR microdevices (balanced and unbalanced configurations) showed that, despite the precision limitations of the xurographic process, it is possible to implement this methodology to produce functional micromixing devices. Mixing efficiency was evaluated numerically and experimentally at the outlet of the microdevices with performances up to 40%. Overall, the assessment encourages further research of xurography for the development of POC micromixers.

13.
Comput Math Methods Med ; 2016: 6183679, 2016.
Article in English | MEDLINE | ID: mdl-27051460

ABSTRACT

Stress shielding is a well-known failure factor in hip implants. This work proposes a design concept for hip implants, using a combination of metallic stem with a polymer coating (polyether ether ketone (PEEK)). The proposed design concept is simulated using titanium alloy stems and PEEK coatings with thicknesses varying from 100 to 400 µm. The Finite Element analysis of the cancellous bone surrounding the implant shows promising results. The effective von Mises stress increases between 81 and 92% for the complete volume of cancellous bone. When focusing on the proximal zone of the implant, the increased stress transmission to the cancellous bone reaches between 47 and 60%. This increment in load transferred to the bone can influence mineral bone loss due to stress shielding, minimizing such effect, and thus prolonging implant lifespan.


Subject(s)
Coated Materials, Biocompatible/chemistry , Hip Prosthesis , Ketones/chemistry , Polyethylene Glycols/chemistry , Prosthesis Design , Titanium/chemistry , Alloys , Arthroplasty, Replacement, Hip/instrumentation , Arthroplasty, Replacement, Hip/methods , Benzophenones , Durapatite/chemistry , Femur/pathology , Finite Element Analysis , Humans , Models, Theoretical , Osseointegration , Polymers , Pressure , Stress, Mechanical
14.
Biosens Bioelectron ; 54: 506-14, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24321884

ABSTRACT

The combination of microarray technologies with microfluidic sample delivery and real-time detection methods has the capability to simultaneously monitor 10-1000 s of biomolecular interactions in a single experiment. Despite the benefits that microfluidic systems provide, they typically operate in the laminar flow regime under mass transfer limitations, where large analyte depletion layers act as a resistance to analyte capture. By locally stirring the fluid and delivering fresh analyte to the capture spot, the use of passive mixing structures in a microarray environment can reduce the negative effects of these depletion layers and enhance the sensor performance. Despite their large potential, little attention has been given to the integration of these mixing structures in microarray sensing environments. In this study, we use passive mixing structures to enhance the mass transfer of analyte to a capture spot within a microfluidic flow cell. Using numerical methods, different structure shapes and heights were evaluated as means to increase local fluid velocities, and in turn, rates of mass transfer to a capture spot. These results were verified experimentally via the real-time detection of 20-mer ssDNA for an array of microspots. Both numerical and experimental results showed that a passive mixing structure situated directly over the capture spot can significantly enhance the binding rate of analyte to the sensing surface. Moreover, we show that these structures can be used to enhance mass transfer in experiments regarding an array of capture spots. The results of this study can be applied to any experimental system using microfluidic sample delivery methods for microarray detection techniques.


Subject(s)
Biosensing Techniques/instrumentation , Microarray Analysis/instrumentation , Microfluidic Analytical Techniques/instrumentation , DNA, Single-Stranded/analysis , Diffusion , Equipment Design
15.
Materials (Basel) ; 6(4): 1434-1451, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-28809219

ABSTRACT

Miniaturization encourages the development of new manufacturing processes capable of fabricating features, like micro-channels, in order to use them for different applications, such as in fuel cells, heat exchangers, microfluidic devices and micro-electromechanical systems (MEMS). Many studies have been conducted on heat and fluid transfer in micro-channels, and they appeared significantly deviated from conventional theory, due to measurement errors and fabrication methods. The present research, in order to deal with this opportunity, is focused on a set of experiments in the micro-milling of channels made of aluminum, titanium alloys and stainless steel, varying parameters, such as spindle speed, depth of cut per pass (ap), channel depth (d), feed per tooth (fz) and coolant application. The experimental results were analyzed in terms of dimensional error, channel profile shape deviation from rectangular and surface quality (burr and roughness). The micro-milling process was capable of offering quality features required on the micro-channeled devices. Critical phenomena, like run-out, ploughing, minimum chip thickness and tool wear, were encountered as an explanation for the deviations in shape and for the surface quality of the micro-channels. The application of coolant and a low depth of cut per pass were significant to obtain better superficial quality features and a smaller dimensional error. In conclusion, the integration of superficial and geometrical features on the study of the quality of micro-channeled devices made of different metallic materials contributes to the understanding of the impact of calibrated cutting conditions in MEMS applications.

16.
Materials (Basel) ; 6(6): 2143-2154, 2013 May 24.
Article in English | MEDLINE | ID: mdl-28809266

ABSTRACT

The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum-chromium-nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.

17.
Materials (Basel) ; 6(7): 2873-2891, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-28811414

ABSTRACT

In this paper we have modified an existing material model introduced by Cantournet and co-workers to take into account softening and residual strain effects observed in polymeric materials reinforced with carbon nanotubes when subjected to loading and unloading cycles. In order to assess the accuracy of the modified material model, we have compared theoretical predictions with uniaxial extension experimental data obtained from reinforced polymeric material samples. It is shown that the proposed model follows experimental data well as its maximum errors attained are lower than 2.67%, 3.66%, 7.11% and 6.20% for brominated isobutylene and paramethylstyrene copolymer reinforced with multiwall carbon nanotubes (BIMSM-MWCNT), reinforced natural rubber (NR-MWCNT), polybutadiene-carbon black (PB-CB), and PC/ABS reinforced with single-wall carbon nanotubes (SWCNT), respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...