Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ DNA ; 6(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38370872

ABSTRACT

The sequencing revolution requires accurate taxonomic classification of DNA sequences. Key to making accurate taxonomic assignments are curated, comprehensive reference barcode databases. However, the generation and curation of such databases has remained challenging given the large and continuously growing volumes of both DNA sequence data and novel reference barcode targets. Monitoring and research applications require a greater diversity of specialized gene regions and targeted taxa then are currently curated by professional staff. Thus there is a growing need for an easy to implement computational tool that can generate comprehensive metabarcoding reference libraries for any bespoke locus. We address this need by reimagining CRUX from the Anacapa Toolkit and present the rCRUX package in R which, like it's predecessor, relies on sequence homology and PCR primer compatibility instead of keyword-searches to avoid limitations of user-defined metadata. The typical workflow involves searching for plausible seed amplicons (get_seeds_local() or get_seeds_remote()) by simulating in silico PCR to acquire a set of sequences analogous to PCR products containing a user-defined set of primer sequences. Next, these seeds are used to iteratively blast search seed sequences against a local copy of the National Center for Biotechnology Information (NCBI) formatted nt database using a taxonomic-rank based stratified random sampling approach ( blast_seeds() ). This results in a comprehensive set of sequence matches. This database is dereplicated and cleaned (derep_and_clean_db()) by identifying identical reference sequences and collapsing the taxonomic path to the lowest taxonomic agreement across all matching reads. This results in a curated, comprehensive database of primer-specific reference barcode sequences from NCBI. Databases can then be compared (compare_db()) to determine read and taxonomic overlap. We demonstrate that rCRUX provides more comprehensive reference databases for the MiFish Universal Teleost 12S, Taberlet trnl, fungal ITS, and Leray CO1 loci than CRABS, MetaCurator, RESCRIPt, and ecoPCR reference databases. We then further demonstrate the utility of rCRUX by generating 24 reference databases for 20 metabarcoding loci, many of which lack dedicated reference database curation efforts. The rCRUX package provides a simple to use tool for the generation of curated, comprehensive reference databases for user-defined loci, facilitating accurate and effective taxonomic classification of metabarcoding and DNA sequence efforts broadly.

2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37445741

ABSTRACT

Target spot is caused by Corynespora cassiicola, which heavily affects soybean production areas that are hot and humid. Resistant soybean genotypes have been identified; however, the molecular mechanisms governing resistance to infection are unknown. Comparative transcriptomic profiling using two known resistant genotypes and two susceptible genotypes was performed under infected and control conditions to understand the regulatory network operating between soybean and C. cassiicola. RNA-Seq analysis identified a total of 2571 differentially expressed genes (DEGs) which were shared by all four genotypes. These DEGs are related to secondary metabolites, immune response, defense response, phenylpropanoid, and flavonoid/isoflavonoid pathways in all four genotypes after C. cassiicola infection. In the two resistant genotypes, additional upregulated DEGs were identified affiliated with the defense network: flavonoids, jasmonic acid, salicylic acid, and brassinosteroids. Further analysis led to the identification of differentially expressed transcription factors, immune receptors, and defense genes with a leucine-rich repeat domain, dirigent proteins, and cysteine (C)-rich receptor-like kinases. These results will provide insight into molecular mechanisms of soybean resistance to C. cassiicola infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.


Subject(s)
Ascomycota , Glycine max , Glycine max/metabolism , Gene Expression Profiling , Ascomycota/genetics , Transcriptome , Plant Diseases/genetics
3.
Genome Biol Evol ; 15(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36740242

ABSTRACT

Delineating the relative influence of genotype and the environment on DNA methylation is critical for characterizing the spectrum of organism fitness as driven by adaptation and phenotypic plasticity. In this study, we integrated genomic and DNA methylation data for two distinct Olympia oyster (Ostrea lurida) populations while controlling for within-generation environmental influences. In addition to providing the first characterization of genome-wide DNA methylation patterns in the oyster genus Ostrea, we identified 3,963 differentially methylated loci between populations. Our results show a clear coupling between genetic and epigenetic patterns of variation, with 27% of variation in interindividual methylation differences explained by genotype. Underlying this association are both direct genetic changes in CpGs (CpG-SNPs) and genetic variation with indirect influence on methylation (mQTLs). When comparing measures of genetic and epigenetic population divergence at specific genomic regions this relationship surprisingly breaks down, which has implications for the methods commonly used to study epigenetic and genetic coupling in marine invertebrates.


Subject(s)
DNA Methylation , Genome , Animals , Genetics, Population , Epigenesis, Genetic , Invertebrates/genetics , CpG Islands
4.
Evol Appl ; 14(12): 2815-2830, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34950231

ABSTRACT

Hybrid zones between diverged lineages offer a unique opportunity to study evolutionary processes related to speciation. Natural and anthropogenic hybridization in the black basses (Micropterus spp.) is well documented, including an extensive intergrade zone between the widespread northern Largemouth Bass (M. salmoides) and the Florida Bass (M. floridanus). Phenotypic surveys have identified an estuarine population of Largemouth Bass (M. salmoides) in the Mobile-Tensaw Delta, with larger relative weight and smaller adult size compared to inland populations, suggesting a potential third lineage of largemouth bass. To determine the evolutionary relationships among these Mobile Delta bass populations, M. salmoides and M. floridanus, putative pure and intergrade populations of all three groups were sampled across the eastern United States. Phylogenetic analyses of 8582 nuclear SNPs derived from genotype-by-sequencing and the ND2 mitochondrial gene determined that Delta bass populations stem from a recently diverged lineage of Largemouth Bass. Using a novel quantitative pipeline, a panel of 73 diagnostic SNPs was developed for the three lineages, evaluated for accuracy, and then used to screen 881 samples from 52 sites for genetic integrity and hybridization on the Agena MassARRAY platform. These results strongly support a redrawing of native ranges for both the intergrade zone and M. floridanus, which has significant implications for current fisheries management. Furthermore, Delta bass ancestry was shown to contribute significantly to the previously described intergrade zone between northern Largemouth Bass and Florida Bass, suggesting a more complex pattern of secondary contact and introgression among these diverged Micropterus lineages.

5.
BMC Ecol Evol ; 21(1): 104, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34049492

ABSTRACT

BACKGROUND: The formation of the Isthmus of Panama and final closure of the Central American Seaway (CAS) provides an independent calibration point for examining the rate of DNA substitutions. This vicariant event has been widely used to estimate the substitution rate across mitochondrial genomes and to date evolutionary events in other taxonomic groups. Nuclear sequence data is increasingly being used to complement mitochondrial datasets for phylogenetic and evolutionary investigations; these studies would benefit from information regarding the rate and pattern of DNA substitutions derived from the nuclear genome. RESULTS: To estimate the genome-wide neutral mutation rate (µ), genotype-by-sequencing (GBS) datasets were generated for three transisthmian species pairs in Alpheus snapping shrimp. A range of bioinformatic filtering parameters were evaluated in order to minimize potential bias in mutation rate estimates that may result from SNP filtering. Using a Bayesian coalescent approach (G-PhoCS) applied to 44,960 GBS loci, we estimated µ to be 2.64E-9 substitutions/site/year, when calibrated with the closure of the CAS at 3 Ma. Post-divergence gene flow was detected in one species pair. Failure to account for this post-split migration inflates our substitution rate estimates, emphasizing the importance of demographic methods that can accommodate gene flow. CONCLUSIONS: Results from our study, both parameter estimates and bioinformatic explorations, have broad-ranging implications for phylogeographic studies in other non-model taxa using reduced representation datasets. Our best estimate of µ that accounts for coalescent and demographic processes is remarkably similar to experimentally derived mutation rates in model arthropod systems. These results contradicted recent suggestions that the closure of the Isthmus was completed much earlier (around 10 Ma), as mutation rates based on an early calibration resulted in uncharacteristically low genomic mutation rates. Also, stricter filtering parameters resulted in biased datasets that generated lower mutation rate estimates and influenced demographic parameters, serving as a cautionary tale for the adherence to conservative bioinformatic strategies when generating reduced-representation datasets at the species level. To our knowledge this is the first use of transisthmian species pairs to calibrate the rate of molecular evolution from GBS data.


Subject(s)
Decapoda , Mutation Rate , Animals , Bayes Theorem , Decapoda/genetics , Panama , Phylogeny
6.
Am Nat ; 197(4): 486-501, 2021 04.
Article in English | MEDLINE | ID: mdl-33755541

ABSTRACT

AbstractPhenotypic plasticity is expected to facilitate the persistence of natural populations as global change progresses. The attributes of fluctuating environments that favor the evolution of plasticity have received extensive theoretical investigation, yet empirical validation of these findings is still in its infancy. Here, we combine high-resolution environmental data with a laboratory-based experiment to explore the influence of habitat pH fluctuation dynamics on the plasticity of gene expression in two populations of the Mediterranean mussel, Mytilus galloprovincialis. We linked differences in the magnitude and predictability of pH fluctuations in two habitats to population-specific gene expression profiles in ambient and stressful pH treatments. Our results demonstrate population-based differentiation in gene expression plasticity, whereby mussels native to a habitat exhibiting a large magnitude of pH fluctuations with low predictability display reduced phenotypic plasticity between experimentally imposed pH treatments. This work validates recent theoretical findings on evolution in fluctuating environments, suggesting that the predictability of fluctuating selection pressures may play a predominant role in shaping the phenotypic variation observed across natural populations.


Subject(s)
Adaptation, Physiological , Biological Evolution , Gene Expression , Mytilus/metabolism , Stress, Physiological , Animals , Hydrogen-Ion Concentration , Mytilus/genetics
7.
Evol Appl ; 12(5): 923-939, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31080505

ABSTRACT

Effective management of threatened and exploited species requires an understanding of both the genetic connectivity among populations and local adaptation. The Olympia oyster (Ostrea lurida), patchily distributed from Baja California to the central coast of Canada, has a long history of population declines due to anthropogenic stressors. For such coastal marine species, population structure could follow a continuous isolation-by-distance model, contain regional blocks of genetic similarity separated by barriers to gene flow, or be consistent with a null model of no population structure. To distinguish between these hypotheses in O. lurida, 13,424 single nucleotide polymorphisms (SNPs) were used to characterize rangewide population structure, genetic connectivity, and adaptive divergence. Samples were collected across the species range on the west coast of North America, from southern California to Vancouver Island. A conservative approach for detecting putative loci under selection identified 235 SNPs across 129 GBS loci, which were functionally annotated and analyzed separately from the remaining neutral loci. While strong population structure was observed on a regional scale in both neutral and outlier markers, neutral markers had greater power to detect fine-scale structure. Geographic regions of reduced gene flow aligned with known marine biogeographic barriers, such as Cape Mendocino, Monterey Bay, and the currents around Cape Flattery. The outlier loci identified as under putative selection included genes involved in developmental regulation, sensory information processing, energy metabolism, immune response, and muscle contraction. These loci are excellent candidates for future research and may provide targets for genetic monitoring programs. Beyond specific applications for restoration and management of the Olympia oyster, this study lends to the growing body of evidence for both population structure and adaptive differentiation across a range of marine species exhibiting the potential for panmixia. Computational notebooks are available to facilitate reproducibility and future open-sourced research on the population structure of O. lurida.

8.
Sci Rep ; 8(1): 6080, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29666427

ABSTRACT

Adaptive evolution and plasticity are two mechanisms that facilitate phenotypic differences between populations living in different environments. Understanding which mechanism underlies variation in fitness-related traits is a crucial step in designing conservation and restoration management strategies for taxa at risk from anthropogenic stressors. Olympia oysters (Ostrea lurida) have received considerable attention with regard to restoration, however there is limited information on adaptive population structure. Using oysters raised under common conditions for up to two generations (F1s and F2s), we tested for evidence of divergence in reproduction, larval growth, and juvenile growth among three populations in Puget Sound, Washington. We found that the population with the fastest growth rate also exhibited delayed and reduced reproductive activity, indicating a potential adaptive trade-off. Our results corroborate and extend upon a previous reciprocal transplant study on F1 oysters from the same populations, indicating that variation in growth rate and differences in reproductive timing are consistent across both natural and laboratory environments and have a strongly heritable component that cannot be entirely attributed to plasticity.


Subject(s)
Ostrea/growth & development , Animals , Breeding , Ecosystem , Female , Genetic Variation , Heterozygote , Larva/genetics , Larva/growth & development , Male , Ostrea/genetics , Phenotype , Population Growth , Reproduction
9.
Sci Data ; 4: 170130, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28895940

ABSTRACT

Olympia oysters are found along the west coast of North America and as the only native oyster species in the region, receive considerable attention with regard to restoration and conservation. Knowledge of genetic structure of this species is essential for resource managers. Here we provide genetic data for three distinct populations of Olympia oysters in Puget Sound, Washington, USA in the form of genotype-by-sequencing data (GBS). Specifically, this includes description of sequence data and a derived table that provides single nucleotide polymorphism (SNP) information for 10,363 loci. These data are valuable not only for resource managers responsible for restoration aquaculture practices, but can provide insight into ecological drivers of selection and diversity.


Subject(s)
Genome , Ostrea/genetics , Animals , Genotyping Techniques , Sequence Analysis , Species Specificity , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...