Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 8(7): 985-91, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19582274

ABSTRACT

The photo-Fenton process (Fe(2+)/Fe(3+), H(2)O(2), UV light) is one of the most efficient and advanced oxidation processes for the mineralization of the organic pollutants of industrial effluents and wastewater. The overall rate of the photo-Fenton process is controlled by the rate of the photolytic step that converts Fe(3+) back to Fe(2+). In this paper, the effect of sulfate or chloride ions on the net yield of Fe(2+) during the photolysis of Fe(3+) has been investigated in aqueous solution at pH 3.0 and 1.0 in the absence of hydrogen peroxide. A kinetic model based on the principal reactions that occur in the system fits the data for formation of Fe(2+) satisfactorily. Both experimental data and model prediction show that the availability of Fe(2+) produced by photolysis of Fe(3+) is inhibited much more in the presence of sulfate ion than in the presence of chloride ion as a function of the irradiation time at pH 3.0.

2.
Environ Sci Technol ; 41(24): 8459-63, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18200879

ABSTRACT

The inhibition of the photo-Fenton (Fe2+/Fe3+, H2O2, UV light) degradation of synthetic phenol wastewater solutions by chloride ions is shown to affect primarily the photochemical step of the process, having only a slight effect on the thermal or Fenton step. Kinetic studies of the reactions of oxoiron (IV) (FeO2+) with phenol indicate that, if FeO2+ is formed in the photo-Fenton degradation, its role is probably minor. Finally, it is shown that, for both a synthetic phenol wastewater and an aqueous extract of Brazilian gasoline, the inhibition of the photo-Fenton degradation of the organic material in the presence of chloride ion can be circumvented by maintaining the pH of the medium at or slightly above 3 throughout the process, even in the presence of significant amounts of added chloride ion (0.5 M).


Subject(s)
Chlorides/chemistry , Photochemistry , Anions , Catalysis , Hydrogen-Ion Concentration , Kinetics
3.
Colloids Surf B Biointerfaces ; 38(1-2): 41-6, 2004 Oct 10.
Article in English | MEDLINE | ID: mdl-15465303

ABSTRACT

Aqueous solutions of 0.5% sodium carboxymethyl cellulose, NaCMC, and 2-hydroxyethyl cellulose, HEC, and variable concentration of sodium dodecyl sulfate, SDS, were studied by the intensities ratio of pyrene fluorescence bands (I/III and monomer/excimer) and conductance measurements to determine the critical aggregation concentration, cac, and the degree of micellar dissociation, alpha, respectively. The cac of these systems is close to 2-4 x 10(-3)M and values of alpha are consistent with the formation of SDS micelles adsorbed cooperatively to the polymer backbone. Laser flash photolysis (LFP) and time-resolved fluorescence (TRF) techniques were employed to determine the micellar aggregation number, N, using the probes flavone and pyrene, respectively. The obtained N for HEC/SDS and NaCMC/SDS were 48 and 68, respectively. The presence of the counterions at the NaCMC backbone is the main factor responsible for this number. Besides, the transient spectra of flavone and present in 0.5% HEC or NaCMC with and in absence of SDS are discussed. Flavone triplet state exit rate constant from the biopolymer/SDS complexes showed that these systems are completely different from a pure SDS micelle.


Subject(s)
Biopolymers/chemistry , Lasers , Photolysis , Sodium Dodecyl Sulfate/chemistry , Carboxymethylcellulose Sodium/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods , Pyrenes/chemistry , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...