ABSTRACT
This research aimed to evaluate enzyme supplementation in diets with different nutritional levels for pigs in their feces excretion and anaerobic digestion. Fifty four gilts were placed on diets formulated to achieve 100 or 95 or 90 % of a pig's nutrient requirements, with the addition of an enzyme complex containing amylase, -glucanase, cellulase, pectinase, xylanase, protease and phytase (diets 100E, 95E and 90E) or without the enzymes (diets 100, 95 and 90). The trial was divided into three periods (1, 1-2 and 1-3) based on the animal weight. The enzyme complex reduced (p < 0.05) excretions per period and per unit of weight gain (residue coefficients) of organic matter (OM) in Period 1, of N, Ca, Zn and Na in Period 1-2, and of Na excretions and residue coefficients in Period 1-3. Animals fed diet 95E had lower excretions (p < 0.05) of dry (DM), organic and mineral matters, N, Ca, Fe, Mn and Cu, and lower residue coefficients (p < 0.05) of DM, OM, P, Fe, Mn and Cu compared with the animals fed diet 95, in Period 1-3. Numerically, the enzyme complex improved biogas and methane production potentials in anaerobic digestion of the feces. The use of an enzyme complex in a diet formulated to provide 95 % of the gilts' nutrient requirements reduced fecal excretion and positively affected the anaerobic digestion of feces. These data show that pig nutrition and feeding are important tools for reducing the potential environmental impact of pig production.(AU)
Subject(s)
Animals , Swine , Nutrients , Feces , Anaerobic Digestion , Biofuels , Environment , Dietary Supplements/analysis , Defecation/physiologyABSTRACT
This research aimed to evaluate enzyme supplementation in diets with different nutritional levels for pigs in their feces excretion and anaerobic digestion. Fifty four gilts were placed on diets formulated to achieve 100 or 95 or 90 % of a pig's nutrient requirements, with the addition of an enzyme complex containing amylase, -glucanase, cellulase, pectinase, xylanase, protease and phytase (diets 100E, 95E and 90E) or without the enzymes (diets 100, 95 and 90). The trial was divided into three periods (1, 1-2 and 1-3) based on the animal weight. The enzyme complex reduced (p < 0.05) excretions per period and per unit of weight gain (residue coefficients) of organic matter (OM) in Period 1, of N, Ca, Zn and Na in Period 1-2, and of Na excretions and residue coefficients in Period 1-3. Animals fed diet 95E had lower excretions (p < 0.05) of dry (DM), organic and mineral matters, N, Ca, Fe, Mn and Cu, and lower residue coefficients (p < 0.05) of DM, OM, P, Fe, Mn and Cu compared with the animals fed diet 95, in Period 1-3. Numerically, the enzyme complex improved biogas and methane production potentials in anaerobic digestion of the feces. The use of an enzyme complex in a diet formulated to provide 95 % of the gilts' nutrient requirements reduced fecal excretion and positively affected the anaerobic digestion of feces. These data show that pig nutrition and feeding are important tools for reducing the potential environmental impact of pig production.
Subject(s)
Animals , Anaerobic Digestion , Feces , Nutrients , Swine , Biofuels , Defecation/physiology , Environment , Dietary Supplements/analysisABSTRACT
Antibiotics have an unquestionable importance in the treatment of many infections. Oxytetracycline is an antibiotic belonging to the class of tetracyclines, available for use in human and veterinary medicine. Development of analytical methods that prove the quality and efficacy of these drugs is fundamentally important to the pharmaceutical industry. In this context, the research presents an overview of the analytical profile of oxytetracycline, describing its chemical and pharmacological properties, and analytical methods for quantification of this drug in biological samples and pharmaceutical products. Oxytetracycline can be analyzed in these matrices by many types of methodologies. However, high-performance liquid chromatography is the most widely used, being recommended by official compendia. This kind of study can be useful to support the development of new efficient and sustainable analytical methods that may be utilized in the quality control routine of oxytetracycline in pharmaceutical products and pharmacokinetic monitoring in biological samples.