Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Adv ; 8(37): eabo5400, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36103544

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces mild or asymptomatic COVID-19 in most cases, but some patients develop an excessive inflammatory process that can be fatal. As the NLRP3 inflammasome and additional inflammasomes are implicated in disease aggravation, drug repositioning to target inflammasomes emerges as a strategy to treat COVID-19. Here, we performed a high-throughput screening using a 2560 small-molecule compound library and identified FDA-approved drugs that function as pan-inflammasome inhibitors. Our best hit, niclosamide (NIC), effectively inhibits both inflammasome activation and SARS-CoV-2 replication. Mechanistically, induction of autophagy by NIC partially accounts for inhibition of NLRP3 and AIM2 inflammasomes, but NIC-mediated inhibition of NAIP/NLRC4 inflammasome are autophagy independent. NIC potently inhibited inflammasome activation in human monocytes infected in vitro, in PBMCs from patients with COVID-19, and in vivo in a mouse model of SARS-CoV-2 infection. This study provides relevant information regarding the immunomodulatory functions of this promising drug for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Inflammasomes , Animals , Humans , Immunomodulating Agents , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , SARS-CoV-2
2.
Immunology ; 160(1): 78-89, 2020 05.
Article in English | MEDLINE | ID: mdl-32107769

ABSTRACT

Annexins are well-known Ca2+ phospholipid-binding proteins, which have a wide variety of cellular functions. The role of annexin A1 (AnxA1) in the innate immune system has focused mainly on the anti-inflammatory and proresolving properties through its binding to the formyl-peptide receptor 2 (FPR2)/ALX receptor. However, studies suggesting an intracellular role of AnxA1 are emerging. In this study, we aimed to understand the role of AnxA1 for interleukin (IL)-1ß release in response to activators of the nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome. Using AnxA1 knockout mice, we observed that AnxA1 is required for IL-1ß release in vivo and in vitro. These effects were due to reduction of transcriptional levels of IL-1ß, NLRP3 and caspase-1, a step called NLRP3 priming. Moreover, we demonstrate that AnxA1 co-localize and directly bind to NLRP3, suggesting the role of AnxA1 in inflammasome activation is independent of its anti-inflammatory role via FPR2. Therefore, AnxA1 regulates NLRP3 inflammasome priming and activation in a FPR2-independent manner.


Subject(s)
Annexin A1/metabolism , Inflammasomes/immunology , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Administration, Intranasal , Animals , Cartilage, Articular , Caspase 1/metabolism , Cells, Cultured , Disease Models, Animal , Gout/chemically induced , Gout/immunology , Gout/pathology , Humans , Inflammasomes/metabolism , Injections, Intra-Articular , Lung/immunology , Lung/pathology , Macrophages , Male , Mice , Mice, Knockout , Primary Cell Culture , Protein Binding/immunology , Silicon Dioxide/administration & dosage , Silicon Dioxide/toxicity , Silicosis/immunology , Silicosis/pathology , Transcription, Genetic/immunology , Uric Acid/administration & dosage , Uric Acid/toxicity
4.
Nat Commun ; 10(1): 5273, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754185

ABSTRACT

Leishmania RNA virus (LRV) is an important virulence factor associated with the development of mucocutaneous Leishmaniasis, a severe form of the disease. LRV-mediated disease exacerbation relies on TLR3 activation, but downstream mechanisms remain largely unexplored. Here, we combine human and mouse data to demonstrate that LRV triggers TLR3 and TRIF to induce type I IFN production, which induces autophagy. This process results in ATG5-mediated degradation of NLRP3 and ASC, thereby limiting NLRP3 inflammasome activation in macrophages. Consistent with the known restricting role of NLRP3 for Leishmania replication, the signaling pathway triggered by LRV results in increased parasite survival and disease progression. In support of this data, we find that lesions in patients infected with LRV+ Leishmania are associated with reduced inflammasome activation and the development of mucocutaneous disease. Our findings reveal the mechanisms triggered by LRV that contribute to the development of the debilitating mucocutaneous form of Leishmaniasis.


Subject(s)
Immunity, Innate/immunology , Inflammasomes/immunology , Leishmania/immunology , Leishmaniasis, Mucocutaneous/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , RNA Viruses/immunology , Toll-Like Receptor 3/immunology , Animals , Autophagy/immunology , Humans , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Leishmania/physiology , Leishmania/virology , Leishmaniasis, Mucocutaneous/parasitology , Leishmaniasis, Mucocutaneous/virology , Macrophages/immunology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA Viruses/physiology , Signal Transduction/immunology , Toll-Like Receptor 3/metabolism
5.
J Leukoc Biol ; 106(3): 631-640, 2019 09.
Article in English | MEDLINE | ID: mdl-31063608

ABSTRACT

The NLRP3 inflammasome is activated in response to multiple stimuli and triggers activation of caspase-1 (CASP1), IL-1ß production, and inflammation. NLRP3 activation requires two signals. The first leads to transcriptional regulation of specific genes related to inflammation, and the second is triggered when pathogens, toxins, or specific compounds damage cellular membranes and/or trigger the production of reactive oxygen species (ROS). Here, we assess the requirement of the first signal (priming) for the activation of the NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) infected with Leishmania amazonensis. We found that BMDMs express the inflammasome components NLRP3, ASC, and CASP1 at sufficient levels to enable the assembly and activation of NLRP3 inflammasome in response to infection. Therefore, priming was not required for the formation of ASC specks, CASP1 activation (measured by fluorescent dye FAM-YVAD), and restriction of L. amazonensis replication via the NLRP3 inflammasome. By contrast, BMDM priming was required for CASP1 cleavage (p20) and IL-1ß secretion, because priming triggers robust up-regulation of pro-IL-1ß and CASP11 that are important for efficient processing of CASP1 and IL-1ß. Taken together, our data shed light into the cellular and molecular processes involved in activation of the NLRP3 in macrophages by Leishmania, a process that is important for the outcome of Leishmaniasis.


Subject(s)
Inflammasomes/metabolism , Leishmania mexicana/physiology , Macrophages/parasitology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , CARD Signaling Adaptor Proteins/metabolism , Enzyme Activation , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Leishmania mexicana/growth & development , Leishmaniasis, Cutaneous/enzymology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Ligands , Lipopolysaccharides , Macrophages/metabolism , Mice, Inbred C57BL , Parasites/growth & development , Receptors, Interleukin-1/metabolism , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism , Up-Regulation
6.
PLoS Pathog ; 14(12): e1007519, 2018 12.
Article in English | MEDLINE | ID: mdl-30589883

ABSTRACT

Innate immune response against Brucella abortus involves activation of Toll-like receptors (TLRs) and NOD-like receptors (NLRs). Among the NLRs involved in the recognition of B. abortus are NLRP3 and AIM2. Here, we demonstrate that B. abortus triggers non-canonical inflammasome activation dependent on caspase-11 and gasdermin-D (GSDMD). Additionally, we identify that Brucella-LPS is the ligand for caspase-11 activation. Interestingly, we determine that B. abortus is able to trigger pyroptosis leading to pore formation and cell death, and this process is dependent on caspase-11 and GSDMD but independently of caspase-1 protease activity and NLRP3. Mice lacking either caspase-11 or GSDMD were significantly more susceptible to infection with B. abortus than caspase-1 knockout or wild-type animals. Additionally, guanylate-binding proteins (GBPs) present in mouse chromosome 3 participate in the recognition of LPS by caspase-11 contributing to non-canonical inflammasome activation as observed by the response of Gbpchr3-/- BMDMs to bacterial stimulation. We further determined by siRNA knockdown that among the GBPs contained in mouse chromosome 3, GBP5 is the most important for Brucella LPS to be recognized by caspase-11 triggering IL-1ß secretion and LDH release. Additionally, we observed a reduction in neutrophil, dendritic cell and macrophage influx in spleens of Casp11-/- and Gsdmd-/- compared to wild-type mice, indicating that caspase-11 and GSDMD are implicated in the recruitment and activation of immune cells during Brucella infection. Finally, depletion of neutrophils renders wild-type mice more susceptible to Brucella infection. Taken together, these data suggest that caspase-11/GSDMD-dependent pyroptosis triggered by B. abortus is important to infection restriction in vivo and contributes to immune cell recruitment and activation.


Subject(s)
Apoptosis Regulatory Proteins/immunology , Brucellosis/immunology , Caspases/immunology , GTP-Binding Proteins/immunology , Immunity, Innate/immunology , Animals , Brucella abortus , Caspases, Initiator , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphate-Binding Proteins
7.
Cell Rep ; 20(4): 794-805, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28746866

ABSTRACT

Inflammasomes are multimeric protein complexes that initiate inflammatory cascades. Their activation is a hallmark of many infectious or inflammatory diseases. Their composition and activity are specified by proinflammatory stimuli. For example, the NLRP3 inflammasome is activated in response to cell damage and K+ efflux, whereas the AIM2 inflammasome is activated in response to cytosolic DNA. We used Legionella pneumophila, an intracellular bacterial pathogen that activates multiple inflammasomes, to elucidate the molecular mechanisms regulating inflammasome activation during infection. Upon infection, the AIM2 inflammasome engaged caspase-1 to induce pore formation in the cell membrane, which then caused K+-efflux-mediated activation of NLRP3. Thus, the AIM2 inflammasome amplifies signals of infection, triggering noncanonical activation of NLRP3. During infection, AIM2 and caspase-11 induced membrane damage, which was sufficient and essential for activating the NLRP3 inflammasome. Our data reveal that different inflammasomes regulate one another's activity to ensure an effective immune response to infection.


Subject(s)
Caspase 1/metabolism , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Caspase 1/genetics , Caspases/metabolism , Caspases, Initiator , DNA-Binding Proteins/genetics , Female , Flagellin/genetics , Flagellin/metabolism , Inflammasomes/genetics , Inflammasomes/immunology , Legionella pneumophila/immunology , Legionella pneumophila/pathogenicity , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Potassium/metabolism
8.
J Immunol ; 195(5): 2303-11, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26232428

ABSTRACT

Gram-negative bacteria from the Legionella genus are intracellular pathogens that cause a severe form of pneumonia called Legionnaires' disease. The bacteria replicate intracellularly in macrophages, and the restriction of bacterial replication by these cells is critical for host resistance. The activation of the NAIP5/NLRC4 inflammasome, which is readily triggered in response to bacterial flagellin, is essential for the restriction of bacterial replication in murine macrophages. Once activated, this inflammasome induces pore formation and pyroptosis and facilitates the restriction of bacterial replication in macrophages. Because investigations related to the NLRC4-mediated restriction of Legionella replication were performed using mice double deficient for caspase-1 and caspase-11, we assessed the participation of caspase-1 and caspase-11 in the functions of the NLRC4 inflammasome and the restriction of Legionella replication in macrophages and in vivo. By using several species of Legionella and mice singly deficient for caspase-1 or caspase-11, we demonstrated that caspase-1 but not caspase-11 was required for pore formation, pyroptosis, and restriction of Legionella replication in macrophages and in vivo. By generating F1 mice in a mixed 129 × C57BL/6 background deficient (129 × Casp-11(-/-) ) or sufficient (129 × C57BL/6) for caspase-11 expression, we found that caspase-11 was dispensable for the restriction of Legionella pneumophila replication in macrophages and in vivo. Thus, although caspase-11 participates in flagellin-independent noncanonical activation of the NLRP3 inflammasome, it is dispensable for the activities of the NLRC4 inflammasome. In contrast, functional caspase-1 is necessary and sufficient to trigger flagellin/NLRC4-mediated restriction of Legionella spp. infection in macrophages and in vivo.


Subject(s)
Apoptosis Regulatory Proteins/immunology , Calcium-Binding Proteins/immunology , Caspase 1/immunology , Caspases/immunology , Legionella/immunology , Legionnaires' Disease/immunology , Macrophages/immunology , Pyroptosis/immunology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Blotting, Western , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Caspases/genetics , Caspases/metabolism , Caspases, Initiator , Cell Line , Cells, Cultured , Enzyme Activation/immunology , Flagella/immunology , Host-Pathogen Interactions/immunology , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Legionella/classification , Legionella/physiology , Legionella pneumophila/immunology , Legionella pneumophila/physiology , Legionnaires' Disease/genetics , Legionnaires' Disease/microbiology , Macrophages/metabolism , Macrophages/microbiology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Pyroptosis/genetics , Species Specificity
9.
Nat Med ; 19(7): 909-15, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23749230

ABSTRACT

Parasites of the Leishmania genus are the causative agents of leishmaniasis in humans, a disease that affects more than 12 million people worldwide. These parasites replicate intracellularly in macrophages, and the primary mechanisms underlying host resistance involve the production of nitric oxide (NO). In this study we show that the Nlrp3 inflammasome is activated in response to Leishmania infection and is important for the restriction of parasite replication both in macrophages and in vivo as demonstrated through the infection of inflammasome-deficient mice with Leishmania amazonensis, Leishmania braziliensis and Leishmania infantum chagasi. Inflammasome-driven interleukin-1ß (IL-1ß) production facilitated host resistance to infection, as signaling through IL-1 receptor (IL-1R) and MyD88 was necessary and sufficient to trigger inducible nitric oxide synthase (NOS2)-mediated production of NO. In this manuscript we identify a major signaling platform for host resistance to Leishmania spp. infection and describe the molecular mechanisms underlying Leishmania-induced NO production.


Subject(s)
Disease Resistance/drug effects , Inflammasomes/immunology , Interleukin-1beta/metabolism , Leishmania , Nitric Oxide/immunology , Animals , Apoptosis Regulatory Proteins , CARD Signaling Adaptor Proteins , Carrier Proteins/genetics , Caspase 1/genetics , Cells, Cultured , Cytoskeletal Proteins/genetics , Disease Resistance/genetics , Disease Resistance/immunology , Female , Leishmaniasis/genetics , Leishmaniasis/immunology , Leishmaniasis/metabolism , Leishmaniasis/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Nitric Oxide Synthase Type II/genetics
10.
PLoS One ; 8(2): e56347, 2013.
Article in English | MEDLINE | ID: mdl-23409175

ABSTRACT

The development of Chagas disease is determined by a complex interaction between the genetic traits of both the protozoan parasite, T. cruzi, and the infected host. This process is regulated by multiple genes that control different aspects of the host-parasite interaction. While determination of the relevant genes in humans is extremely difficult, it is feasible to use inbred mouse strains to determine the genes and loci responsible for host resistance to infection. In this study, we investigated the susceptibility of several inbred mouse strains to infection with the highly virulent Y strain of T. cruzi and found a considerable difference in susceptibility between A/J and C57BL/6 mice. We explored the differences between these two mouse strains and found that the A/J strain presented higher mortality, exacerbated and uncontrolled parasitemia and distinct histopathology in the target organs, which were associated with a higher parasite burden and more extensive tissue lesions. We then employed a genetic approach to assess the pattern of inheritance of the resistance phenotype in an F1 population and detected a strong parent-of-origin effect determining the susceptibility of the F1 male mice. This effect is unlikely to result from imprinted genes because the inheritance of this susceptibility was affected by the direction of the parental crossing. Collectively, our genetic approach of using the F1 population suggests that genes contained in the murine chromosome X contribute to the natural resistance against T. cruzi infection. Future linkage studies may reveal the locus and genes participating on the host resistance process reported herein.


Subject(s)
Chagas Disease/genetics , Hybridization, Genetic , Trypanosoma cruzi/physiology , Animals , Disease Susceptibility , Female , Genetic Loci/genetics , Male , Mice , Phenotype , Sex Characteristics , Species Specificity , X Chromosome/genetics
11.
Vet Parasitol ; 165(3-4): 231-40, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19656631

ABSTRACT

The aim of this study was to evaluate the histopathological features in tissues of mice infected by human isolates (I, II, and III) or the reference M2903 strain of Leishmania braziliensis complex. BALB/c and C57Bl/6 mice were infected in the hind footpad with 10(6) stationary-phase promastigotes of L. braziliensis complex. The evolution of lesions was observed for 10 weeks and the animals were then euthanized and liver, spleen and popliteal lymph nodes were collected. Tissues were stained with hematoxylin and eosin and analyzed by immunohistochemistry assay. Increased thickness of infected footpads was observed in all animals, lesions were nodular and non-ulcerated. Mice infected with isolate I presented inflammatory infiltrates consisting predominantly of mononuclear cells in all tissues examined, and also a great number of megakaryocytes, compared with other isolates. Infection with isolate II led to an infected footpad enlargement not seen in other isolates. In addition, mononuclear infiltrates in the liver and hemosiderin in spleen were noted. Conversely, mice infected with either isolate III or M2903 strain only showed an increased number of megakaryocytes in spleen. All tissues examined had detectable amastigote forms of Leishmania by immunohistochemistry in all groups. Taking together, our results showed an unforeseen behavior of different isolates of L. braziliensis complex that led to diverse pathological findings.


Subject(s)
Leishmania braziliensis/physiology , Leishmaniasis, Cutaneous/pathology , Leishmaniasis, Cutaneous/parasitology , Animals , Disease Models, Animal , Female , Humans , Leishmania braziliensis/isolation & purification , Liver/parasitology , Liver/pathology , Lymph Nodes/parasitology , Lymph Nodes/pathology , Megakaryocytes/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Spleen/parasitology , Spleen/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...