Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Sci. agric ; 75(2): 95-101, Mar.-Apr.2018. graf, tab, ilus
Article in English | VETINDEX | ID: biblio-1497701

ABSTRACT

The knowledge on spatial and temporal variations of soil water storage in the root zone of crops is essential to guide the studies to determine soil water balance, verify the effective zone of water extraction in the soil and indicate the correct region for the management of water, fertilizers and pesticides. The objectives of this study were: (i) to indicate the zones of highest root activity for banana in different development stages; (ii) to determine, inside the zone of highest root activity, the adequate position for the installation of soil moisture sensors. A 5.0 m3 drainage lysimeter was installed in the center of an experimental area of 320 m2. Water extraction was quantified inside the lysimeter using a 72 TDR probe. The concept of time stability was applied to indicate the position for sensor installation within the limits of effective water extraction. There are two patterns of water extraction distribution during the development of banana and the point of installation of sensors for irrigation management inside the zone of highest root activity is not constant along the crop development.


Subject(s)
Soil Conditions , Agricultural Irrigation/methods , Plant Roots , Soil Moisture
2.
Sci. agric. ; 75(2): 95-101, Mar.-Apr.2018. graf, tab, ilus
Article in English | VETINDEX | ID: vti-18141

ABSTRACT

The knowledge on spatial and temporal variations of soil water storage in the root zone of crops is essential to guide the studies to determine soil water balance, verify the effective zone of water extraction in the soil and indicate the correct region for the management of water, fertilizers and pesticides. The objectives of this study were: (i) to indicate the zones of highest root activity for banana in different development stages; (ii) to determine, inside the zone of highest root activity, the adequate position for the installation of soil moisture sensors. A 5.0 m3 drainage lysimeter was installed in the center of an experimental area of 320 m2. Water extraction was quantified inside the lysimeter using a 72 TDR probe. The concept of time stability was applied to indicate the position for sensor installation within the limits of effective water extraction. There are two patterns of water extraction distribution during the development of banana and the point of installation of sensors for irrigation management inside the zone of highest root activity is not constant along the crop development.(AU)


Subject(s)
Soil Moisture , Plant Roots , Soil Conditions , Agricultural Irrigation/methods
3.
Sci. agric ; 72(1): 1-10, Jan.-Feb. 2015. ilus, graf, tab
Article in English | VETINDEX | ID: biblio-1497458

ABSTRACT

Spatial and temporal variability of soil water extraction from the root zone affect soil water balance determination. The number of sensors installed in the root zone in studies addressing water balance is still set arbitrarily. This study provided an investigation of the water extraction process by banana (Musa spp.) roots by (i) determining the variability of water extraction from the banana tree root zone, (ii) detecting differences in the estimation of evapotranspiration (ET) by the soil water balance method when the number of soil profiles monitored in the roots zone varies, (iii) and; determining the minimum number of Time Domain Reflectometry (TDR) probes needed to obtain ET precision and accuracy similar to that determined by a drainage lysimeter. The field experiment was conducted in Cruz das Almas, in the state of Bahia, Brazil, where a drainage lysimeter was installed on a banana plantation. The water extraction in the banana root zone was quantified by the water content variations monitored in 72 points by TDRs, with measurements at 15-min intervals. The variability of water extraction in the banana root zone was medium to high. The range of variability affects the reliability of the crop evapotranspiration calculation by the soil water balance method. To prevent an overestimation of banana evapotranspiration, the water extraction in the soil profile must be monitored with at least 16 TDR probes installed at a minimum distance of 0.9 m and a minimum depth of 0.7 m.


Subject(s)
Hydrologic Balance , Evapotranspiration , Musa , Soil Moisture
4.
Sci. agric. ; 72(1): 1-10, Jan.-Feb. 2015. ilus, graf, tab
Article in English | VETINDEX | ID: vti-30101

ABSTRACT

Spatial and temporal variability of soil water extraction from the root zone affect soil water balance determination. The number of sensors installed in the root zone in studies addressing water balance is still set arbitrarily. This study provided an investigation of the water extraction process by banana (Musa spp.) roots by (i) determining the variability of water extraction from the banana tree root zone, (ii) detecting differences in the estimation of evapotranspiration (ET) by the soil water balance method when the number of soil profiles monitored in the roots zone varies, (iii) and; determining the minimum number of Time Domain Reflectometry (TDR) probes needed to obtain ET precision and accuracy similar to that determined by a drainage lysimeter. The field experiment was conducted in Cruz das Almas, in the state of Bahia, Brazil, where a drainage lysimeter was installed on a banana plantation. The water extraction in the banana root zone was quantified by the water content variations monitored in 72 points by TDRs, with measurements at 15-min intervals. The variability of water extraction in the banana root zone was medium to high. The range of variability affects the reliability of the crop evapotranspiration calculation by the soil water balance method. To prevent an overestimation of banana evapotranspiration, the water extraction in the soil profile must be monitored with at least 16 TDR probes installed at a minimum distance of 0.9 m and a minimum depth of 0.7 m.(AU)


Subject(s)
Hydrologic Balance , Soil Moisture , Musa , Evapotranspiration
SELECTION OF CITATIONS
SEARCH DETAIL