ABSTRACT
Purpose: In the kidneys, Systemic Lupus Erythematosus leads to Lupus Nephritis (LN), a form of glomerulonephritis. There is evidence that patients with LN may present activation of specific pathways for podocyte injury. This injury can occur through different mechanisms such as loss of podocyte adhesion to the glomerular basement membrane, cell death or dedifferentiation. Podocyturia with consequent podocytopenia has been described in some nephropathies such as LN, highlighting the importance of studying podocyte injuries in this condition. Evaluating in situ morphological characteristics of podocytes becomes relevant for a better understanding of the processes involved in their pathogenesis. This study investigated podocytes in different classes of LN in renal biopsies performed by the Kidney Research Center at the Federal University of Triângulo Mineiro. Patients and Methods: Twenty control cases and 29 biopsy cases diagnosed with LN were selected, divided according to the histopathological classes of the disease. Podocyte density was assessed through immunohistochemistry for Wilms tumor 1 protein and the evaluation of foot process effacement was performed by transmission electron microscopy. Results: Podocyte density was lower in the LN and this reduction was observed in all analyzed classes when compared to the control group. More foot process effacement was observed in the LN group, with more effacement in classes I/II and class IV compared to the control group. The class IV group showed more foot process effacement than the class III group and presented higher proteinuria levels compared to the classes I/II group. A strong, positive, and significant correlation was observed between the activity index and foot process effacement in the class IV group. Conclusion: Podocytes play an important role in the development of LN, and possibly, injuries to these cells are more closely related to the inflammatory/diffuse proliferative cellular process developed in class IV LN.
ABSTRACT
This study evaluated the efficiency of in vitro culture of preantral follicles (PAF) in a commonly used medium for mesenchymal stem cell (MSC) culture. Parameters assessed included follicle survival, growth, stromal cell density, levels of reduced thiols and reactive oxygen species, epigenetic changes, cell apoptosis, and mRNA abundance. Caprine ovarian tissues were cultured for 1 or 7 days in either PAF or MSC-common media, with uncultured tissues serving as controls. The MSC medium exhibited increased follicular survival and growth and remodeled stromal density potentially through the regulation of oxidative stress and epigenetic changes compared to the PAF medium. In conclusion, our results highlight the importance of the MSC medium in enhancing follicular survival and growth, changing the stromal cell density, as well as in regulating the medium oxidative stress and epigenetic changes during the in vitro culture of caprine PAF.
ABSTRACT
This brief review delves into the topic of in vitro follicle culture for in vitro embryo production, with a particular emphasis on goat models. Specifically, we examine the main findings from LAMOFOPA-Brazil over the last 20 years, highlighting the challenges posed by oxidative stress and epigenetic changes. Our focus is on strategies to improve follicular development and oocyte maturation. Furthermore, we underscore the valuable role of the antioxidant anethole in optimizing the efficacy of in vitro follicle culture and improving outcomes in in vitro embryo production.
ABSTRACT
OBJECTIVES: To analyze the incorporation of cardanol trimethacrylate monomer (CTMA), derived from the cashew nut shell liquid, as a substitute for Bis-GMA in acrylic resins formulations and its effect on experimental resin composites' physicochemical and mechanical properties. MATERIALS AND METHODS: The intermediary cardanol epoxy was synthesized via cardanol epoxidation, followed by the synthesis of CTMA through methacrylic anhydride solvent-free esterification. Experimental resin composites were formulated with an organic matrix composed of Bis-GMA/TEGDMA (50/50 wt %) (control). CTMA was gradually added to replace different proportions of Bis-GMA: 10 wt % (CTMA-10), 20 wt % (CTMA-20), 40 wt % (CTMA-40), and 50 wt % (CTMA-50). The composites were characterized by degree of conversion, water sorption and solubility, viscosity, thermogravimetric analysis, dynamic mechanical analysis, flexural strength and elastic modulus. Data were analyzed with one-way ANOVA and Tukey's post-hoc test (α = 0.05), except for water sorption data, which were analyzed by Kruskall-Wallis and Dunn's method. RESULTS: CTMA-based and control composites did not show statistically significant differences regarding degree of conversion, flexural strength and elastic modulus. CTMA reduced the viscosity and solubility compared to the Bis-GMA-based composite. The CTMA-40 and CTMA-50 exhibited significantly lower water sorption compared to the control. Also, acceptable thermal stability and viscoelastic properties were obtained for safe use in the oral cavity. CONCLUSIONS: Incorporating CTMA into composites resulted in similar chemical and mechanical properties compared to Bis-GMA-based material while reducing viscosity, water sorption and solubility. CLINICAL RELEVANCE: CTMA could be used as a trimethacrylate monomer replacing Bis-GMA in resin composites, thereby minimizing BPA exposure.
Subject(s)
Bisphenol A-Glycidyl Methacrylate , Composite Resins , Flexural Strength , Materials Testing , Phenols , Polymethacrylic Acids , Solubility , Composite Resins/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Phenols/chemistry , Viscosity , Polymethacrylic Acids/chemistry , Elastic Modulus , Methacrylates/chemistry , Thermogravimetry , Polyethylene Glycols/chemistry , Anacardium/chemistryABSTRACT
The present study aimed to evaluate the anti-staphylococcal, antibiofilm, cytotoxicity and trypanocidal activity, mechanisms of parasite death and immunomodulatory effect of CrataBL encapsulated into liposomes (CrataBL-Lipo). CrataBL-Lipo were prepared by the freeze-thaw technique and characterized. Anti-staphylococcal and antibiofilm activities of CrataBL and CrataBL-Lipo were evaluated against standard and clinical strains of Staphylococcus aureus susceptible and resistant. Thus, broth microdilution method was performed to determine the Minimum Inhibitory Concentration (MIC). Antibiofilm activity at subinhibitory concentrations was evaluated using the crystal violet staining method. Cytotoxicity of CrataBL-Lipo was verified in L929 fibroblasts and J774A.1 macrophages by determining the inhibitory concentration necessary to kill 50 % of cells (IC50). Trypanocidal activities of CrataBL-Lipo was evaluated in Trypanosoma cruzi and the efficacy was expressed as the concentration necessary to kill 50 % of parasites (EC50). The mechanisms of parasite death and immunomodulatory effect of CrataBL-Lipo were evaluated using flow cytometry analysis. CrataBL-Lipo presented Ø of 101.9 ± 1.3 nm (PDI = 0.245), ζ of +33.8 ± 1.3 mV and %EE = 80 ± 0.84 %. CrataBL-Lipo presented anti-staphylococcal activity (MIC = 0.56 mg/mL to 0.72 mg/mL). CrataBL-Lipo inhibited 45.4 %-75.6 % of biofilm formation. No cytotoxicity of CrataBL-Lipo was found (IC50 > 100 mg/L). CrataBL-Lipo presented EC50 of 1.1 mg/L, presenting autophagy, apoptosis and necrosis as death profile. In addition, CrataBL-Lipo reduced the production of IL-10 and TNF-α levels, causing an immunomodulatory effect. CrataBL-Lipo has a therapeutic potential for the treatment of staphylococcal infections and Chagas disease exhibiting a high degree of selectivity for the microorganism, and immunomodulatory properties.
Subject(s)
Anti-Bacterial Agents , Biofilms , Liposomes , Microbial Sensitivity Tests , Staphylococcus aureus , Trypanocidal Agents , Trypanosoma cruzi , Biofilms/drug effects , Trypanosoma cruzi/drug effects , Animals , Mice , Staphylococcus aureus/drug effects , Cell Line , Anti-Bacterial Agents/pharmacology , Trypanocidal Agents/pharmacology , Macrophages/drug effects , Lectins/pharmacology , Fibroblasts/drug effects , Inhibitory Concentration 50 , Cell Survival/drug effectsABSTRACT
Aim: ESCPM bacteria include Enterobacter spp, Serratia, Citrobacter spp, Providencia spp, and Morganella spp. These Gram-negative bacilli harbor chromosomally encoded AmpC-type ß-lactamases that cause resistance to ß-lactam antibiotics, such as penicillins, ß-lactam/ß-lactamase inhibitors, and first-, second-, and third-generation cephalosporins. Bloodstream infections caused by ESCPM group bacteria (BSI-ESCPM) are difficult to treat. Purpose: To describe 30-day mortality and analyze potential risk factors for death in patients with BSI-ESCPM. Patients and Methods: A cohort study of patients aged ≥ 18 years with BSI-ESCPM was conducted at a University Hospital in Brazil, from January 2013 and December 2018. Potential risk factors for death within 30 days of bloodstream infection BSI diagnosis were analyzed using multivariable logistic regression. Results: Among 138 patients with BSI-ESCPM, 63.0% were males, with a median age of 61 years. Of 155 BSI-ESCPM episodes, 61.3% were hospital-acquired. Primary BSI-ESCPM associated with short-term central venous catheter (37.4%) and BSI-ESCPM secondary to respiratory infection (19.4%) occurred mainly. Mostly, Enterobacter spp. (49.7%) and Serratia spp. (29.0%) were isolated. Multidrug-resistance occurred in 27.7% of BSI-ESCPM episodes, involving Enterobacter spp. (16.1%) and Serratia spp. (7.7%) mainly. The mortality was 24.5%. Developing septic shock within 72 h of BSI-ESCPM diagnosis (OR: 70.26; 95% CI: 16.69-295.77; P<0.01) was risk factor for death. Conversely, combined antibiotic therapy (OR: 0.23; 95% CI: 0.05-0.94; P:0.04), BSI-ESCPM secondary to urinary infection (OR: 0.11; 95% CI: 0.01-0.99; P:0.05), and Enterobacter spp. BSI (OR: 0.16; 95% CI: 0.05-0.56; P0<0.01) was protective factor against death. Tendency of association between inadequate antibiotic therapy and death (OR: 2.19; 95% CI: 0.51-9.42; P:0.29) was observed. Conclusion: BSI-ESCPM is severe and has serious outcomes such as sepsis-associated deaths. Combined antibiotic therapy was a protective factor against death in patients with BSI-ESCPM. There is a suggestive association between inadequate antibiotic therapy and mortality. The ESCPM group bacteria that are considered to be at moderate to high risk of clinically significant AmpC production were not associated with death.
ABSTRACT
Obesity has a complex multifactorial etiology and is characterized by excessive accumulation of adipose tissue. Visceral adipose tissue has deleterious effects on health because it secretes large amounts of inflammatory cytokines. Nutritional calorie restriction associated with strength training may be useful in managing chronic systemic inflammation. This study aimed to evaluate the acute effect of a single strength-training session on plasma adipokine levels in sedentary, overweight, and obese young men. This study included twelve men (Age: [34.95 â± â9.77] years; Height: [174.16 â± â3.66] centimeter [cm]; Weight: [97.83 â± â12.87] kilogram (kg); body mass index [BMI]: [32.30 â± â4.51] kg/m2), who performed a single strength training session. The strength training protocol consisted of 4 sets of 12 repetitions in the following six exercises, 45° leg press, bench press, leg extension, machine row, leg curl, and shoulder press. Blood samples were collected before, immediately after, and 1-h subsequent after strength training. The plasma levels of resistin and leptin were measured. A significant decrease in resistin levels were found 1 âh after the strength training session if compared to levels before the training session (pre-[before] [2 390 â± â1 199] picograms per milliliter [pg/mL] vs post-1 h [1-h subsequent] [1 523 â± â798],6 âpg/mL, p â= â0.002 8). The plasma leptin levels did not differ at any time point. In conclusion, a very well controlled single session of strength training significantly decreased the plasma levels of resistin without altering the concentration of leptin in overweight and obese individuals. This effect, at least in part, supports the benefits of exercise by reducing the low grade inflammation and insulin resistance in obesity.
ABSTRACT
OBJECTIVES: to assess the socio-cognitive factors determining adherence to standard precautions by nursing professionals in care practice during the COVID-19 pandemic in Brazil. METHODS: an analytical cross-sectional study, carried out with 9,039 nursing professionals in Brazil, using an electronic form containing participant sociodemographic, training and work variables, and the Brazilian version of the Standard Precautions Questionnaire. Descriptive and inferential statistics were used using the statistical software R. RESULTS: participants recognize standard precautions as effective measures to reduce infections and report intention to perform them. Training regarding standard precautions was evidenced as a facilitator of adherence (4.72; SD: 0.73), and problems related to materials (3.78; SD: 1.45) were a hindrance. CONCLUSIONS: among the determining factors, facilitating organization presented the highest score, followed by intention to perform. Facilitating and hindering factor identification makes it possible to develop intervention strategies to strengthen patient safety and reduce occupational risks among professionals.
Subject(s)
COVID-19 , Guideline Adherence , Pandemics , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/nursing , COVID-19/epidemiology , Cross-Sectional Studies , Brazil , Female , Male , Adult , Surveys and Questionnaires , Guideline Adherence/statistics & numerical data , Guideline Adherence/standards , Middle Aged , Universal Precautions/methodsABSTRACT
The Brazilian western Amazon is experiencing its largest laboratory-confirmed Oropouche virus (OROV) outbreak, with more than 6,300 reported cases between 2022 and 2024. In this study, we sequenced and analyzed 382 OROV genomes from human samples collected in Amazonas, Acre, Rondônia and Roraima states, between August 2022 and February 2024, to uncover the origin and genetic evolution of OROV in the current outbreak. Genomic analyses revealed that the upsurge of OROV cases in the Brazilian Amazon coincides with spread of a novel reassortant lineage containing the M segment of viruses detected in the eastern Amazon region (2009-2018) and the L and S segments of viruses detected in Peru, Colombia and Ecuador (2008-2021). The novel reassortant likely emerged in the Amazonas state between 2010 and 2014 and spread through long-range dispersion events during the second half of the 2010s. Phylodynamics reconstructions showed that the current OROV spread was driven mainly by short-range (< 2 km) movements consistent with the flight range of vectors. Nevertheless, a substantial proportion (22%) of long-range (>10 km) OROV migrations were also detected, consistent with viral dispersion by humans. Our data provide a view of the unprecedented spread and evolution of OROV in the Brazilian western Amazon region.
ABSTRACT
This study aimed to characterize Pseudomonas aeruginosa strains isolated from hospitalized patients during the COVID-19 pandemic. This was achieved using phenotypic and molecular techniques, including their antimicrobial resistance profile and biofilm formation. Eighteen strains were isolated from a hospital in Rio de Janeiro, Brazil, and identified by VITEK®2, MALDI-TOF/MS (VITEK MS® and MALDI Biotyper®), and 16S rRNA sequencing. Fourier-transform infrared (FTIR) spectroscopy, antimicrobial susceptibility testing, and biofilm formation and disinfectant tolerance tests were applied to evaluate the virulence characteristics of the strains. VITEK®2 (≥99%), VITEK MS® (≥82.7%), and MALDI Biotyper® (score ≥ 2.01) accurately identified the P. aeruginosa strains, but 16S rRNA sequencing did not differentiate the species P. aeruginosa from P. paraeruginosa. FTIR typing identified three different clusters, but no correlation between the phenotypical or antimicrobial susceptibility testing patterns was found. Most strains exhibited resistance to various antimicrobials. The exceptions were sensitivity to amikacin and norfloxacin, and consequently, these could be considered potential treatment options. Most strains (n = 15, 83.3%) produced biofilms on polystyrene. Sodium hypochlorite treatment (0.5%/15 min) was shown to be the most effective disinfectant for biofilm elimination. P. aeruginosa biofilm formation and tolerance to disinfectants demonstrate the need for effective cleaning protocols to eliminate contamination by this organism in the hospital environment and medical equipment.
ABSTRACT
Neosporosis is one of the major causes of abortion in cattle, and it is responsible for significant economic losses in those animals. Thus, this study aimed to evaluate indirect ELISA using subcellular fractions of Neospora caninum obtained via sucrose gradient separation. Eighty-five sera from dairy cattle previously tested using indirect immunofluorescence assay (IFA) were used. Three distinct bands were separated at 1.0 M, 1.4 M, 1.6 M, and the pellet at 1.8 M, which were identified as fractions one (F1), two (F2), three (F3), and four (F4), respectively. These fractions showed parasite membranes in the F1, rhoptry and conoids in the F2, mitochondria in the F3, and tachyzoite ghosts remain in F4. Indirect ELISAs for IgM, and IgG were performed. Additionally, sensitivity, specificity, and kappa values were defined considering the IFA as the gold standard. The highest and lowest specificities were observed for F1 (76 %) and F3 (16 %), respectively. F2 and F4 showed the highest sensitivity (93.3 %), kappa agreement (0.46), and Negative Preventive Value (NPV) (73 %) respectively. It was possible to standardize indirect ELISAs using whole soluble antigen and subcellular fractions of N. caninum, and F2 and F4 showed higher sensitivity (93.3 %), kappa (0.41), and NPV values (75 %) than F1, and F3, which could be used for epidemiology studies such as screening.
ABSTRACT
Red pitaya fruit has become a source of natural colorant, because it is rich in betalains, a pigment that imparts a red-purple color that interests the food and cosmetics industries. This fruit also possesses high nutritional value, with a range of bioactive compounds known to confer potential health benefits and prevent chronic diseases, such as diabetes, which makes it useful for use as pharmaceutical agents and dietary supplements. In order to improve its technological and biological effects, a concentration will be required. Thus, the microfiltration, followed by vacuum concentration, can be an interesting strategy for this purpose. This study aimed to explore tangential microfiltration to produce microfiltered material, which is an important step to obtain the microfiltered red-purple pitaya concentrate. Therefore, physicochemical and chemical characterization (including 1H NMR analysis) and biological properties (toxicity and diabetes) of this concentrate were assessed, using adult zebrafish as a model. The results show that microfiltration was carried out efficiently, with an average consumption of 95.75 ± 3.13 and 74.12 ± 3.58 kW h m-3, varying according to the material used ("unpeeled pitaya pulp" or "pitaya pulp with peel," respectively). The in vivo tests indicated non-toxicity and hypoglycemic effect of the concentrate, since the blood glucose levels were significantly lower in the zebrafish groups treated with this concentrate in comparison with that of control group. Thus, this study suggests the potential of microfiltered red-purple pitaya concentrate as a promising multifunctional food-derived colorant, exhibiting beneficial biological effects far beyond its attractive color. PRACTICAL APPLICATION: Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose has attracted attention as a potential source of natural colorants because of its red-purple skin and flesh color. In addition, this fruit has a range of bioactive compounds, which make it a valuable resource for providing potential health benefits and preventing chronic diseases such as diabetes. In this paper, the microfiltered red-purple pitaya concentrate showed beneficial biological effects far beyond its attractive color. Thus, this product can be considered a promising multifunctional food-derived colorant to use in the food, pharmaceutical, or cosmetics industries.
Subject(s)
Cactaceae , Food Coloring Agents , Fruit , Zebrafish , Animals , Fruit/chemistry , Food Coloring Agents/pharmacology , Food Coloring Agents/chemistry , Cactaceae/chemistry , Betalains/pharmacology , Betalains/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Color , Filtration/methods , Nutritive ValueABSTRACT
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome with a wide spectrum of cognitive deficits, motor impairment, and psychiatric disturbances resulting from liver damage. The cytokine TNF has been considered the main cytokine in the development and progression of HE, with a pivotal role in the initiation and amplification of the inflammatory cascade. The aim of the present study was to evaluate the involvement of TNF type 1 receptor (TNFR1) in locomotor deficits and in the levels of TNF, IFN-γ, IL-6, IL-10, IL-12p70, CCL2, CX3CL1 and BDNF from the frontal cortex and hippocampus of TNFR1 knockout mice (TNFR1-/-) mice with HE induced by thioacetamide. Wild-type (WT) animals with HE developed locomotor deficit. The absence of TNFR1 absence of TNFR1 in HE animals attenuated the locomotor activity impairment in parallel with a balanced neuroinflammatory environment 24 h after the administration of thioacetamide. Taken together, the data suggests that the absence of TNFR1 promoted a protective response in the early phase of hepatic encephalopathy induced by thioacetamide in mice.
Subject(s)
Hepatic Encephalopathy , Mice, Knockout , Receptors, Tumor Necrosis Factor, Type I , Thioacetamide , Animals , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/deficiency , Thioacetamide/toxicity , Hepatic Encephalopathy/metabolism , Mice , Male , Cytokines/metabolism , Mice, Inbred C57BLABSTRACT
In mammals, the central circadian oscillator is located in the suprachiasmatic nucleus (SCN). Hypothalamus-pituitary-thyroid axis components exhibit circadian oscillation, regulated by both central clock innervation and intrinsic circadian clocks in the anterior pituitary and thyroid glands. Thyroid disorders alter the rhythmicity of peripheral clocks in a tissue-dependent response; however, whether these effects are influenced by alterations in the master clock remains unknown. This study aimed to characterize the effects of hypothyroidism on the rhythmicity of SCN, body temperature (BT) and metabolism, and the possible mechanisms involved in this signalling. C57BL/6J adult male mice were divided into Control and Hypothyroid groups. Profiles of spontaneous locomotor activity (SLA), BT, oxygen consumption ( V Ì O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) and respiratory quotient (RQ) were determined under free-running conditions. Clock gene expression, and neuronal activity of the SCN and medial preoptic nucleus (MPOM) area were investigated in light-dark (LD) conditions. Triiodothyronine (T3) transcriptional regulation of Bmal1 promoter activity was evaluated in GH3-transfected cells. Hypothyroidism delayed the rhythmicity of SLA and BT, and altered the expression of core clock components in the SCN. The activity of SCN neurons and their outputs were also affected, as evidenced by the loss of circadian rhythmicity in V Ì O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and RQ and alterations in the neuronal activity pattern of MPOM. In GH3 cells, T3 increased Bmal1 promoter activity in a time-dependent manner. Thyroid hormone may act as a temporal cue for the central circadian clock, and the uncoupling of central and peripheral clocks might contribute to a wide range of metabolic and thermoregulatory impairments observed in hypothyroidism. KEY POINTS: Hypothyroidism alters clock gene expression in the suprachiasmatic nucleus (SCN). Thyroid hypofunction alters the phase of spontaneous locomotor activity and body temperature rhythms. Thyroid hormone deficiency alters the daily pattern of SCN and medial preoptic nucleus neuronal activities. Hypothyroidism alterations are extended to daily oscillations of oxygen consumption and metabolism, which might contribute to the development of metabolic syndrome. Triiodothyronine increases Bmal1 promoter activity acting as temporal cue for the central circadian clock.
Subject(s)
ARNTL Transcription Factors , Hypothyroidism , Mice, Inbred C57BL , Suprachiasmatic Nucleus , Triiodothyronine , Animals , Male , Hypothyroidism/physiopathology , Hypothyroidism/metabolism , Hypothyroidism/genetics , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Mice , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology , Circadian Rhythm/physiology , Body Temperature/physiology , Circadian Clocks/genetics , Circadian Clocks/physiology , Gene Expression RegulationABSTRACT
PURPOSE: Parathyroid hormone (PTH) is merit as a risk factor for mortality in patients with chronic kidney disease in prevalent hemodialysis patients in a U shape. Most studies, however, do not focus on incident patients and those who died within the first 90 days of therapy. We evaluated PTH as a risk factor for mortality in a large cohort population in Brazil. METHODS: This is an observational cohort study that included 4317 adult patients who initiated hemodialysis between July 1st, 2012 and June 30, 2017. The main outcome was all-cause mortality. Fine-gray sub-distribution hazard models were used to evaluate survival in the presence of a competing event (kidney transplant). RESULTS: Median PTH levels of 252 (118, 479) pg/mL. There were 331 deaths during the first 90 days of therapy (6.7%), 430 in a 1-year follow-up (10.7%) and 1282 (32%) during the 5-year study period. Deaths according to PTH < 150, 150-600 and > 600 pg/mL corresponded to 38.1%, 33.0% and 28.5%, respectively (p < 0.001). In an adjusted model, patients who started dialysis with PTH < 150 pg/mL had a higher mortality risk within the first 90 days, but not in 1 year and 5 years after starting dialysis. Analyses in a subset of patients with a repeated PTH in 1 year (N = 1954) showed that although persistent PTH low levels (< 150 pg/mL) at 1 year were significantly associated with all-cause mortality, this result was not sustained after multiple adjustments. CONCLUSION: PTH < 150 pg/mL confers a high mortality risk in the first 90 days of dialysis. If this result reflects poor nutritional conditions, it deserves further investigations.
ABSTRACT
OBJECTIVE: The objective of this study was to evaluate the shear bond strength of metal brackets bonded with indirect bonding, under different surface treatment protocols. MATERIAL AND METHODS: 40 bovine teeth were randomly divided into four groups (n = 10), according to the type of surface treatment: G1 = 70% alcohol, G2 = air/water spray, G3 = 100-µm aluminum oxide blasting, G4 = direct boning. After drying, the standard Edgewise central incisor brackets were bonded with light-cured resin. The brackets were moved from the plaster models by means of a transfer tray made with condensation silicone, and bonded to the surface of the enamel with self-curing adhesive. The samples were submitted to shear tests by a universal test machine. Data were analyzed with SPSS 20.0 by the one-way ANOVA test and the Tukey post-test. RESULTS: No statistically significant difference (p=0.174) was observed between the mean forces measured between the group for shear strength values of the groups during the test: G1 (5.33 MPa), G2 (3.52 MPa) and G3 (4.58 MPa). CONCLUSION: The bracket surface treatment protocols presented similarities in shear bond strength test. However, alcohol 70% and oxide blasting presented higher absolute values of resistance than the water group.
Subject(s)
Dental Bonding , Dental Enamel , Orthodontic Brackets , Shear Strength , Surface Properties , Animals , Cattle , Dental Enamel/drug effects , Dental Bonding/methods , Aluminum Oxide/chemistry , Dental Stress Analysis , Materials Testing , Resin Cements/chemistry , Ethanol , Water/chemistry , Random AllocationABSTRACT
Borosilicate glass was developed to enhance the mechanical behavior and smoothness of dental zirconia as an alternative to conventional glaze. This study assessed the mechanical and optical properties of 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) coated with borosilicate glass or a commercial glaze fired for an extended period of time. Disc-shaped 3Y-TZP zirconia specimens (Zpex, Tosoh) were sintered at 1550°C for 2 hours. The specimens were divided into three groups: as-sintered (control, C); commercial glaze (G); and borosilicate glass (SL). The glaze and borosilicate glass were applied over the zirconia and fired for 20 minutes at 950°C and 1200°C, respectively. Biaxial flexural strength, fractography, X-ray diffraction (XRD), roughness (Ra and Rz), fracture toughness (Vickers indentation method), color difference (∆E00), and translucency (TP00) analyses were conducted. The t-test or the one-way ANOVA and Tukey's tests were used to analyze the data (α = 0.05). Flexural strength data were subjected to the Weibull analysis. The SL group exhibited the highest flexural strength (1025.8 MPa), whereas the C (859.41 MPa) and G (816.0 MPa) groups exhibited similar values. The SL group also had the highest characteristic strength. The fracture origin in all groups was on the zirconia surface. XRD analysis revealed that the specimens from the SL group contained tetragonal, cubic, and monoclinic phases. The SL group presented the lowest surface roughness. Fracture toughness in the SL group was lower than in the C group, but similar to that observed in the G group. The translucency and color differences observed in the G and SL groups were similar. Borosilicate glass enhanced the flexural strength of 3Y-TZP, promoted the smoothest surface, and exhibited optical properties similar to those of the glaze.
Subject(s)
Glass , Materials Testing , Surface Properties , X-Ray Diffraction , Yttrium , Zirconium , Zirconium/chemistry , Yttrium/chemistry , Glass/chemistry , Analysis of Variance , Time Factors , Flexural Strength , Silicates/chemistry , Reproducibility of Results , Reference Values , Statistics, Nonparametric , Color , Optical Phenomena , Hardness Tests , Dental Materials/chemistryABSTRACT
BACKGROUND: Kefir is a complex microbial community that plays a critical role in the fermentation and production of bioactive peptides, and has health-improving properties. The composition of kefir can vary by geographic localization and weather, and this paper focuses on a Brazilian sample and continues previous work that has successful anti-Alzheimer properties. In this study, we employed shotgun metagenomics and peptidomics approaches to characterize Brazilian kefir further. RESULTS: We successfully assembled the novel genome of Lactobacillus kefiranofaciens (LkefirU) and conducted a comprehensive pangenome analysis to compare it with other strains. Furthermore, we performed a peptidome analysis, revealing the presence of bioactive peptides encrypted by L. kefiranofaciens in the Brazilian kefir sample, and utilized in silico prospecting and molecular docking techniques to identify potential anti-Alzheimer peptides, targeting ß-amyloid (fibril and plaque), BACE, and acetylcholinesterase. Through this analysis, we identified two peptides that show promise as compounds with anti-Alzheimer properties. CONCLUSIONS: These findings not only provide insights into the genome of L. kefiranofaciens but also serve as a promising prototype for the development of novel anti-Alzheimer compounds derived from Brazilian kefir.