Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 8(13): e1900158, 2019 07.
Article in English | MEDLINE | ID: mdl-30957992

ABSTRACT

Bioprinting technology has emerged as an important approach to bone and cartilage tissue engineering applications, because it allows the printing of scaffolds loaded with various components, such as cells, growth factors, or drugs. In this context, the bone has a very complex architecture containing highly vascularized and calcified tissues, while cartilage is avascular and has low cellularity and few nutrients. Owing to this complexity, the repair and regeneration of these tissues are highly challenging. Identification of the appropriate biomaterial and fabrication technologies can provide sustainable solutions to this challenge. Here, nanosized Laponite® (Laponite is a trademark of the company BYK Additives Ltd.) has shown to be a promising material due to its unique properties such as excellent biocompatibility, facile gel formation, shear-thinning property (reversible physical crosslinking), high specific surface area, degrade into nontoxic products, and with osteoinductive properties. Even though Laponite and Laponite-based composite for 3D bioprinting application are considered as soft gels, they may therefore not be thought exhibiting sufficient mechanical strength for orthopedic applications. However, through the merging with suitable composite and, also by incorporation of crosslinking step, desired mechanical strength for orthopedic application can be obtained. In this review, recent advances and future perspective of bioprinting Laponite and Laponite composites for orthopedic applications are highlighted.


Subject(s)
Bioprinting/methods , Musculoskeletal Diseases/therapy , Silicates/therapeutic use , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Bone Substitutes/chemistry , Bone Substitutes/therapeutic use , Humans , Musculoskeletal Diseases/pathology , Nanoparticles/chemistry , Printing, Three-Dimensional , Silicates/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry
2.
Article in English | MEDLINE | ID: mdl-31921824

ABSTRACT

Poly (lactic acid) (PLA) has been increasingly used in cutaneous tissue engineering due to its low cost, ease of handling, biodegradability, and biocompatibility, as well as its ability to form composites. However, these polymers possess a structure with nanoporous that mimic the cellular environment. In this study, nanocomposites are prepared using PLA and titanium dioxide (TiO2) (10 and 35%-w/w) nanoparticles that also function as an active anti-scarring agent. The nanocomposites were prepared using an electrospinning technique. Three different solutions were prepared as follows: PLA, 10% PLA/TiO2, and 35% PLA/TiO2 (w/w%). Electrospun PLA and PLA/TiO2 nanocomposites were characterized morphologically, structurally, and chemically using electron scanning microscopy, transmission electron microscopy, goniometry, and X-ray diffraction. L929 fibroblast cells were used for in vitro tests. The cytotoxic effect was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Versicam (VCAN), biglicam (BIG), interleukin-6 (IL6), interleukin-10 (IL-10), and type-1 collagen (COL1A1) genes were evaluated by RT-qPCR. In vivo tests using Wistar rats were conducted for up to 15 days. Nanofibrous fibers were obtained for all groups that did not contain residual solvents. No cytotoxic effects were observed for up to 168 h. The genes expressed showed the highest values of versican and collagen-1 (p < 0.05) for PLA/TiO2 nanocomposite scaffolds when compared to the control group (cells). Histological images showed that PLA at 10 and 35% w/w led to a discrete inflammatory infiltration and expression of many newly formed vessels, indicating increased metabolic activity of this tissue. To summarize, this study supported the potential of PLA/TiO2 nanocomposites ability to reduce cutaneous scarring in scaffolds.

3.
J Biomed Mater Res B Appl Biomater ; 106(7): 2615-2624, 2018 10.
Article in English | MEDLINE | ID: mdl-29328519

ABSTRACT

The modification of biomaterials approved by the Food and Drug Administration could be an alternative to reduce the period of use in humans. Porous bioceramics are widely used as support structures for bone formation and repair. This composite has essential characteristics for an implant, including good mechanical properties, high chemical stability, biocompatibility and adequate aesthetic appearance. Here, three-dimensional porous scaffolds of Al2 O3 containing 5% by volume of ZrO2 were produced by the replica method. These scaffolds had their surfaces chemically treated with phosphoric acid and were coated with calcium phosphate using the biomimetic method simulated body fluid (SBF, 5×) for 14 days. The scaffolds, before and after biomimetic coating, were characterized mechanically, morphologically and structurally by axial compression tests, scanning electron microscopy, microtomography, apparent porosity, X-ray diffractometry, near-infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, energy dispersive X-ray spectroscopy and reactivity. The in vitro cell viability and formation of mineralization nodules were used to identify the potential for bone regeneration. The produced scaffols after immersion in SBF were able to induce the nodules formation. These characteristics are advantaged by the formation of different phases of calcium phosphates on the material surface in a reduced incubation period. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2615-2624, 2018.


Subject(s)
Aluminum Oxide , Biomimetic Materials , Ceramics , Coated Materials, Biocompatible , Materials Testing , Zirconium , Aluminum Oxide/chemistry , Aluminum Oxide/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Line, Tumor , Ceramics/chemistry , Ceramics/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Porosity , Zirconium/chemistry , Zirconium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...