ABSTRACT
Increased carbon dioxide in the atmosphere and its absorption across the ocean surface will alter natural variations in pH and temperature levels, occurring in coastal upwelling ecosystems. The scallop Argopecten purpuratus, one of the most economically important species farmed in northern Chile, has been shown to be vulnerable to these environmental drivers. However, the regulatory responses at the gene-level of scallops to these climate stressors remain almost unknown. Consequently, we used an orthogonal experimental design and RNAseq approach to analyze the acute effects of variability in pH and temperature on gene expression in the muscle tissue of A. purpuratus. In respect to control conditions (pH ~ 8.0/ 14 °C), the influence of low pH (~ 7.7) and temperature (14 °C) induced the activation of several genes associated with apoptotic signaling pathways and protein localization to plasma membrane. Elevated temperature (18 °C) and pH (~8.0) conditions increased the expression of transcripts associated with the activation of muscle contraction, regulation, and sarcomere organization effects on muscle tissue. In scallops exposed to low pH and elevated temperature, the genes expressed were differentially associated with the oxidation-reduction process, signal translation, and positive regulation of GTPase activity. These results indicated that the differentially expressed genes under the experimental conditions tested are mainly related to the mitigation of cellular damage and homeostasis control. Our results add knowledge about the function of the adductor muscle in response to stressors in scallops. Furthermore, these results could help in the identification of molecular biomarkers of stress necessary to be integrated into the aquaculture programs for the mitigation of climate change.
Subject(s)
Ecosystem , Pectinidae , Animals , Temperature , Pectinidae/genetics , Aquaculture , Gene Expression Profiling , Hydrogen-Ion ConcentrationABSTRACT
Snow algae play crucial roles in cold ecosystems, however, many aspects related to their biology, adaptations and especially their diversity are not well known. To improve the identification of snow algae from colored snow, in the present study we used a polyphasic approach to describe a new Antarctic genus, Chlorominima with the species type Chlorominima collina. This new taxon was isolated of colored snow collected from the Collins Glacier (King George Island) in the Maritime Antarctic region. Microscopy revealed biflagellated ellipsoidal cells with a rounded posterior end, a C-shaped parietal chloroplast without a pyrenoid, eyespot, and discrete papillae. Several of these characteristics are typical of the genus Chloromonas, but the new isolate differs from the described species of this genus by the unusual small size of the cells, the presence of several vacuoles, the position of the nucleus and the shape of the chloroplast. Molecular analyzes confirm that the isolated alga does not belong to Chloromonas and therefore forms an independent lineage, which is closely related to other unidentified Antarctic and Arctic strains, forming a polar subclade in the Stephanosphaerinia phylogroup within the Chlamydomonadales. Secondary structure comparisons of the ITS2 rDNA marker support the idea that new strain is a distinct taxon within of Caudivolvoxa. Physiological experiments revealed psychrophilic characteristics, which are typical of true snow algae. This status was confirmed by the partial transcriptome obtained at 2°C, in which various cold-responsive and cryoprotective genes were identified. This study explores the systematics, cold acclimatization strategies and their implications for the Antarctic snow flora.
ABSTRACT
The small South American marsupial, Dromiciops gliroides, known as the missing link between the American and the Australian marsupials, is one of the few South American mammals known to hibernate. Expressing both daily torpor and seasonal hibernation, this species may provide crucial information about the mechanisms and the evolutionary origins of marsupial hibernation. Here, we compared torpid and active individuals, applying high-throughput sequencing technologies (RNA-seq) to profile gene expression in three D. gliroides tissues and determine whether hibernation induces tissue-specific differential gene expression. We found 566 transcripts that were significantly up-regulated during hibernation (369 in brain, 147 in liver and 50 in skeletal muscle) and 339 that were down-regulated (225 in brain, 79 in liver and 35 in muscle). The proteins encoded by these differentially expressed genes orchestrate multiple metabolic changes during hibernation, such as inhibition of angiogenesis, prevention of muscle disuse atrophy, fuel switch from carbohydrate to lipid metabolism, protection against reactive oxygen species and repair of damaged DNA. According to the global enrichment analysis, brain cells seem to differentially regulate a complex array of biological functions (e.g., cold sensitivity, circadian perception, stress response), whereas liver and muscle cells prioritize fuel switch and heat production for rewarming. Interestingly, transcripts of thioredoxin-interacting protein (TXNIP), a potent antioxidant, were significantly over-expressed during torpor in all three tissues. These results suggest that marsupial hibernation is a controlled process where selected metabolic pathways show adaptive modulation that can help to maintain homeostasis and enhance cytoprotection in the hypometabolic state.
Subject(s)
Hibernation/genetics , Marsupialia/genetics , Transcriptome , Animals , Brain/metabolism , Chile , Gene Expression Regulation , Liver/metabolism , Marsupialia/metabolism , Muscle Cells/metabolism , Thermogenesis , Torpor/geneticsABSTRACT
Bacterial endosymbionts that produce important phenotypic effects on their hosts are common among plant sap-sucking insects. Aphids have become a model system of insect-symbiont interactions. However, endosymbiont research has focused on a few aphid species, making it necessary to make greater efforts to other aphid species through different regions, in order to have a better understanding of the role of endosymbionts in aphids as a group. Aphid endosymbionts have frequently been studied by PCR-based techniques, using species-specific primers, nevertheless this approach may omit other non-target bacteria cohabiting a particular host species. Advances in high-throughput sequencing technologies are complementing our knowledge of microbial communities by allowing us the study of whole microbiome of different organisms. We used a 16S rRNA amplicon sequencing approach to study the microbiome of aphids in order to describe the bacterial community diversity in introduced populations of the cereal aphids, Sitobion avenae and Rhopalosiphum padi in Chile (South America). An absence of secondary endosymbionts and two common secondary endosymbionts of aphids were found in the aphids R. padi and S. avenae, respectively. Of those endosymbionts, Regiella insecticola was the dominant secondary endosymbiont among the aphid samples. In addition, the presence of a previously unidentified bacterial species closely related to a phytopathogenic Pseudomonad species was detected. We discuss these results in relation to the bacterial endosymbiont diversity found in other regions of the native and introduced range of S. avenae and R. padi. A similar endosymbiont diversity has been reported for both aphid species in their native range. However, variation in the secondary endosymbiont infection could be observed among the introduced and native populations of the aphid S. avenae, indicating that aphid-endosymbiont associations can vary across the geographic range of an aphid species. In addition, we discuss the potential role of aphids as vectors and/or alternative hosts of phytopathogenic bacteria.
ABSTRACT
Marine ectotherms inhabiting intertidal and shallow subtidal environments are continuously exposed to diurnal tidal cycles and seasonal variability in temperature. These organisms have adaptive mechanisms to maintain cellular homeostasis, irrespective of thermal environmental variation. In this study, we describe the molecular responses to thermal stress in the edible sea urchin Loxechinus albus. In particular, we determined the differential expression of a set of molecular markers that have been identified as targets of stress-related responses. These include the heat shock proteins (hsp70 and hsp90), cell detoxification proteins (cytochrome P450), and osmorregulatory proteins (α and ß - Na+/K+ATPase). We exposed individuals to different temperatures; a warm treatment (18±1.0°C), a cold treatment (10±1.0°C), and a control treatment (average local temperature of 14±1.0°C) and differential expression was quantified after 2, 6, 12 and 48h of exposure. Levels of mRNA were quantified by reverse transcription-quantitative polymerase chain reaction, and the relative expression of each gene was calculated using the 18S rRNA gene as a reference, and the control treatment as a calibrator. We found that the expression levels of all studied genes increased during exposure to warmth. The largest increase in expression was observed in cytochrome p450 genes (ca. sixteen-fold); this was followed by increases in the expression of the Na+/K+ATPase (ca. eight-fold) and by the hsp (ca. six fold) genes. These results indicate that sea urchin thermal stress responses depend on differential gene-regulation, involving heat-shock, membrane potential, and detoxification genes that generate an integrated adaptive response to acute environmental changes.
Subject(s)
Gene Expression Regulation/physiology , Sea Urchins/genetics , Stress, Physiological/genetics , Animals , Thermotolerance/geneticsABSTRACT
Mazzaella laminarioides is a common haploid-diploid red alga that forms dense beds. This alga has a wide distributional range, covering 3,500 km of the Chilean coast, but is restricted to high rocky intertidal zones. Recently, the existence of three highly divergent genetic lineages was demonstrated for this taxon, and two cytoplasmic markers were used to determine that these lineages are distributed in strict parapatry. Here, using 454 next-generation sequencing, we developed polymorphic microsatellite loci that cross amplify in all three cytoplasmic lineages. Six sites (i.e., two sites within each lineage) were analyzed using nine microsatellite loci. Our work shows that, although substantial cytoplasmic differentiation occurs within M. laminarioides, the microsatellite loci did not retrieve three nuclear genetic clusters as expected. Indeed, while the northernmost and southernmost cytoplasmic lineages form two strongly divergent nuclear groups characterized by diagnostic alleles, the third cytoplasmic lineage did not form a third nuclear independent group. It is possible that inter-lineage gene exchange has occurred, particularly at sites along the contact zone between the different cytoplasmic lineages. This nuclear-cytoplasmic incongruence in M. laminarioides could be explained by incomplete lineage sorting of the nuclear genes or asymmetric introgressive hybridization between the lineages. Finally, highly significant heterozygote deficiencies (suggesting occurrence of intergametophytic selfing) were observed in the three small northernmost sites while the large southernmost sites generally approached panmixia.
Subject(s)
Genetic Markers , Genetic Variation , Microsatellite Repeats , Rhodophyta/genetics , Chile , DNA, Algal/genetics , Sequence Analysis, DNAABSTRACT
The green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) is amajor pest of agriculture worldwide that has proved to be particularly adept at evolving insecticide resistance. Several mechanisms that confer resistance to many insecticide types have been described in M. persicae. We measured the resistance status of nine multilocus genotypes (MLGs) of this aphid species collected in Chile. MLGs were identified using microsatellite markers, and these MLG clonal populations were measured for the presence of modified acetylcholinesterase (MACE), kdr and super kdr mutations, and enhanced carboxyl esterase activity. Toxicological bioassays were used to estimate aphid LC50 when treated with metamidophos (organophosphate), pirimicarb (dimethyl carbamate), cyfluthrin (pyrethroid), and imidacloprid (neonicotinoid). Two MLGs presented >20-fold resistance to pirimicarb, which was associated with the MACE mutation in the heterozygous condition. The kdr mutation was found in only four MLGs in the heterozygous condition and they showed resistance ratios (RR) to cyfluthrin of less than sevenfold. The super kdr mutation was not detected. Enhanced carboxyl esterase activity was predominantly found in the susceptible (S) to first level of resistance (R1) with RR to metamidophos less than eight-fold. Finally, RR to imidacloprid was also less than eight-fold in all MLGs tested. A few MLGs with resistance to pirimicarb were found, while susceptibility to cyfluthrin, metamidophos and imidacloprid was still predominant. A significant positive correlation between imidacloprid tolerance with pirimicarb resistance was detected, as well as between imidacloprid and metamidophos tolerance. With the increase in the use of neonicotinoid insecticides, better rotation of insecticides with different modes of action will be necessary to prevent further development of M. persicae insecticide resistance in Chile.
Subject(s)
Aphids/genetics , Insecticide Resistance/genetics , Insecticides , Animals , Carbamates , Chile , Female , Genotype , Imidazoles , Neonicotinoids , Nitriles , Nitro Compounds , Organothiophosphorus Compounds , Pyrethrins , PyrimidinesABSTRACT
Most evolutionary research on biological invasions has focused on changes seen between the native and invaded range for a particular species. However, it is likely that species that live in human-modified habitats in their native range might have evolved specific adaptations to those environments, which increase the likelihood of establishment and spread in similar human-altered environments. From a quantitative genetic perspective, this hypothesis suggests that both native and introduced populations should reside at or near the same adaptive peak. Therefore, we should observe no overall changes in the G (genetic variance-covariance) matrices between native and introduced ranges, and stabilizing selection on fitness-related traits in all populations. We tested these predictions comparing three populations of the worldwide pest Myzus persicae from the Middle East (native range) and the UK and Chile (separately introduced ranges). In general, our results provide mixed support for this idea, but further comparisons of other species are needed. In particular, we found that there has been some limited evolution in the studied traits, with the Middle East population differing from the UK and Chilean populations. This was reflected in the structure of the G-matrices, in which Chile differed from both UK and Middle East populations. Furthermore, the amount of genetic variation was massively reduced in Chile in comparison with UK and Middle East populations. Finally, we found no detectable selection on any trait in the three populations, but clones from the introduced ranges started to reproduce later, were smaller, had smaller offspring, and had lower reproductive fitness than clones from the native range.
ABSTRACT
BACKGROUND: Insecticide resistance is one of the best examples of rapid micro-evolution found in nature. Since the development of the first synthetic insecticide in 1939, humans have invested considerable effort to stay ahead of resistance phenotypes that repeatedly develop in insects. Aphids are a group of insects that have become global pests in agriculture and frequently exhibit insecticide resistance. The green peach aphid, Myzus persicae, has developed resistance to at least seventy different synthetic compounds, and different insecticide resistance mechanisms have been reported worldwide. METHODOLOGY/PRINCIPAL FINDINGS: To further characterize this resistance, we analyzed genome-wide transcriptional responses in three genotypes of M. persicae, each exhibiting different resistance mechanisms, in response to an anti-cholinesterase insecticide. The sensitive genotype (exhibiting no resistance mechanism) responded to the insecticide by up-regulating 183 genes primarily ones related to energy metabolism, detoxifying enzymes, proteins of extracellular transport, peptidases and cuticular proteins. The second genotype (resistant through a kdr sodium channel mutation), up-regulated 17 genes coding for detoxifying enzymes, peptidase and cuticular proteins. Finally, a multiply resistant genotype (carrying kdr and a modified acetylcholinesterase), up-regulated only 7 genes, appears not to require induced insecticide detoxification, and instead down-regulated many genes. CONCLUSIONS/SIGNIFICANCE: This study suggests strongly that insecticide resistance in M. persicae is more complex that has been described, with the participation of a broad array of resistance mechanisms. The sensitive genotype exhibited the highest transcriptional plasticity, accounting for the wide range of potential adaptations to insecticides that this species can evolve. In contrast, the multiply resistant genotype exhibited a low transcriptional plasticity, even for the expression of genes encoding enzymes involved in insecticide detoxification. Our results emphasize the value of microarray studies to search for regulated genes in insects, but also highlights the many ways those different genotypes can assemble resistant phenotypes depending on the environmental pressure.
Subject(s)
Aphids/genetics , Genome, Insect/genetics , Insecticide Resistance/genetics , Transcriptome , Animals , Aphids/growth & development , Carbamates/pharmacology , Gene Expression Regulation/drug effects , Genotype , Humans , Insect Proteins/genetics , Insecticides/pharmacology , Oligonucleotide Array Sequence Analysis , Prunus/parasitology , Pyrimidines/pharmacology , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
BACKGROUND: Among herbivorous insects that have exploited agro-ecosystems, the peach-potato aphid, Myzus persicae, is recognized as one of the most important agricultural pests worldwide. Uses over 400 plant species and has evolved different insecticides resistance mechanisms. As M. persicae feeds upon a huge diversity of hosts, it has been exposed to a wide variety of plant allelochemicals, which probably have promoted a wide range of detoxification systems. METHODOLOGY/PRINCIPAL FINDINGS: In this work we (i) evaluated whether insecticide resistance mutations (IRM) in M. persicae can give an advantage in terms of reproductive fitness when aphids face two hosts, pepper (Capsicum annuum) a suitable host and radish (Raphanus sativus) the unfavorable host and (ii) examined the transcriptional expression of six genes that are known to be up-regulated in response to insecticides. Our results show a significant interaction between host and IRM on the intrinsic rate of increase (r(m)). Susceptible genotypes (not carrying insensitivity mutations) had a higher r(m) on pepper, and the transcriptional levels of five genes increased on radish. The r(m) relationship was reversed on the unfavorable host; genotypes with multiple IRM exhibited higher r(m), without altering the transcriptional levels of the studied genes. Genotypes with one IRM kept a similar r(m) on both hosts, but they increased the transcriptional levels of two genes. CONCLUSIONS/SIGNIFICANCE: Although we have studied only nine genotypes, overall our results are in agreement with the general idea that allelochemical detoxification systems could constitute a pre-adaptation for the development of insecticide resistance. Genotypes carrying IRM exhibited a higher r(m) than susceptible genotypes on radish, the more unfavorable host. Susceptible genotypes should be able to tolerate the defended host by up-regulating some metabolic genes that are also responding to insecticides. Hence, our results suggest that the trade-off among resistance mechanisms might be quite complex, with a multiplicity of costs and benefits depending on the environment.