Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198219

ABSTRACT

This manuscript describes the synthesis and characterization of five new organic-inorganic hybrid (OIH) sol-gel materials that were obtained from a functionalized siloxane 3-glycidoxypropyltrimethoxysilane (GPTMS) by the reaction with the new Jeffamine®, namely three different diamines, i.e., EDR-148, RFD-270, and THF-170, a secondary diamine, i.e., SD-2001, and a triamine, i.e., T-403. The OIH sol-gel materials were characterized by UV-visible absorption spectrophotometry, steady-state photoluminescence spectroscopy, and electrochemical impedance spectroscopy. The reported OIH sol-gel materials showed that, with the exception of the samples prepared with Jeffamine® SD-2001, the transmittance values ranged between 61% and 79%. Regarding the capacitance data, the values reported changed between 0.008 and 0.013 nF cm-2. Due to their optical and electrical properties these new OIH materials show promising properties for applications as support films in an optical sensor area such as fiber sensor devices. Studies to assess the chemical stability of the OIH materials in contact with cement pastes after 7, 14, and 28 days were also performed. The samples prepared with THF-170 and GPTMS, when compared to the samples prepared with RFD-270 and T-403, exhibited improved behavior in the cement paste (alkaline environment), showing promising properties for application as support film in optical fiber sensors in the civil engineering field.

2.
Polymers (Basel) ; 12(2)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046023

ABSTRACT

Nowadays, concrete degradation is a major problem in the civil engineering field. Concrete carbonation, one of the main sources of structures' degradation, causes concrete's pH to decrease; hence, enabling the necessary conditions for corrosion reinforcement. An accurate, non-destructive sensor able to monitor the pH decrease resistant to concrete conditions is envisaged by many researchers. Optical fibre sensors (OFS) are generally used for concrete applications due to their high sensitivity and resistance to external interferences. Organic-inorganic hybrid (OIH) films, for potential functionalization of OFS to be applied in concrete structures, were developed. Polydimethylsiloxane (PDMS) based sol-gel materials were synthesized by the formation of an amino alcohol precursor followed by hydrolysis and condensation. Different ratios between PDMS and (3-aminopropyl)triethoxysilane (3-APTES) were studied. The synthesized OIH films were characterized by Fourier-transformed infrared spectroscopy (FTIR), UV-Vis spectroscopy, electrochemical impedance spectroscopy (EIS) and thermogravimetric analysis (TGA). The OIH films were doped with phenolphthalein (Phph), a pH indicator, and were characterized by UV-Vis and EIS. FTIR characterization showed that the reaction between both precursors, the hydrolysis and the condensation reactions occurred successfully. UV-Vis characterization confirmed the presence of Phph embedded in the OIH matrices. Dielectric and thermal properties of the materials showed promising properties for application in contact with a high alkaline environment.

3.
ACS Appl Bio Mater ; 1(6): 1893-1905, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-34996290

ABSTRACT

Eumelanins are melanocyte-derived natural pigments with inherent electrical cues and outstanding physicochemical properties, which enhance the electroconductivity of the synthetic polymeric scaffold, upon incorporation as nanoparticles. Electrospun nanofibrous meshes generated from such composite polymers are of great interest for muscle tissue engineering applications. In this study, we investigated the feasibility of fabricating nanofibrous scaffolds of polyvinyl alcohol (PVA) incorporated with eumelanin nanoparticles (EUNp) by electrospinning and further assessed their impact on myogenic differentiation of skeletal myoblasts. Morphological and physicochemical analysis of EUNp-PVA nanofibrous mesh showed uniform, bead-free, thermally stable, and randomly oriented nanofibers (450 ± 10 nm) with effective retention of the incorporated EUNp, without any chemical cross-reactivity. Voltammetric measurements of EUNp-PVA mesh exhibits stable electrical conductivity (∼4.0 S cm-1), which was undetectable in plain PVA meshes. In vitrocytocompatibility studies showed a significant increase in viability, proliferation, and metabolic activity of the seeded C2C12 myoblast on EUNp-PVA mesh compared to controls. Interestingly, EUNp-PVA nanofibers supported reorganization of the C2C12 myoblast, with comparatively longer and wider myotube-like structures formed. Our results suggest that an EUNp-PVA composite nanofibrous scaffold with inherent electroconductive properties of incorporated EUNp and topographical cues of PVA nanofibers could be an excellent biomaterial scaffold for skeletal muscle tissue engineering applications.

4.
Materials (Basel) ; 10(3)2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28772667

ABSTRACT

Hybrid sol-gel coatings, named U(X):TEOS, based on ureasilicate matrices (U(X)) enriched with tetraethoxysilane (TEOS), were synthesized. The influence of TEOS addition was studied on both the structure of the hybrid sol-gel films as well as on the electrochemical properties. The effect of TEOS on the structure of the hybrid sol-gel films was investigated by solid state Nuclear Magnetic Resonance. The dielectric properties of the different materials were investigated by electrochemical impedance spectroscopy. The corrosion behavior of the hybrid coatings on HDGS was studied in chloride-contaminated simulated concrete pore solutions (SCPS) by polarization resistance measurements. The roughness of the HDGS coated with hybrids was also characterized by atomic force microscopy. The structural characterization of the hybrid materials proved the effective reaction between Jeffamine® and 3-isocyanate propyltriethoxysilane (ICPTES) and indicated that the addition of TEOS does not seem to affect the organic structure or to increase the degree of condensation of the hybrid materials. Despite the apparent lack of influence on the hybrids architecture, the polarization resistance measurements confirmed that TEOS addition improves the corrosion resistance of the hybrid coatings (U(X):TEOS) in chloride-contaminated SCPS when compared to samples prepared without any TEOS (U(X)). This behavior could be related to the decrease in roughness of the hybrid coatings (due TEOS addition) and to the different metal coating interaction resulting from the increase of the inorganic component in the hybrid matrix.

5.
Colloids Surf B Biointerfaces ; 157: 48-55, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28575740

ABSTRACT

Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg-1 at the optimum binding pH buffer.


Subject(s)
Magnetics , Proteins/chemistry , Silicon Dioxide/chemistry , Zinc/chemistry , Adsorption , Biotechnology , Histidine/chemistry , Hydrogen-Ion Concentration
6.
J Nanosci Nanotechnol ; 9(10): 6234-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19908520

ABSTRACT

Carbon nanofibres were functionalized by a Diels-Alder cycloaddition reaction of 1,3-butadiene, generated in situ from sulfolene. The experimental conditions were selected on the basis of a differential scanning calorimetry (DSC) study on the reagents and the functionalization was confirmed by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Analysis performed on the surface of the functionalized material by X-ray photoelectron spectroscopy (XPS) and FT-IR using the Attenuated Total Reflectance (ATR) technique indicates that the carbonyl and sulfoxide groups are present on the surface of the functionalized material. The acidic surface of the functionalized nanofiber suggests the presence of carboxylic acid and possibly sulfonic acid groups.

7.
Langmuir ; 20(23): 10268-72, 2004 Nov 09.
Article in English | MEDLINE | ID: mdl-15518523

ABSTRACT

Hybrid organic-inorganic nanocomposites containing uniform distributions of metal nanoparticles have been prepared by mixing a preformed nanoparticle colloid with the precursors of a ureasil, prior to the sol-gel transition. These nanocomposites possess not only high optical quality and optical features dictated by the size and shape of the nanoparticle dopants but also a high degree of flexibility, which can largely enhance the range of applications in practical devices. The deposition of a uniform silica shell on the nanoparticle surface prior to the sol-gel transition was found to be required to maintain the colloidal stability during the process and, thus, to retain the optical properties in the final nanocomposite material. This method can be readily extended to other materials, such as semiconductor and magnetic nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...