Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 194: 106689, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171419

ABSTRACT

Oxycodone is one of the most commonly used opioids to treat moderate to severe pain. It is metabolized mainly by CYP3A4 and CYP2D6, while only a small fraction of the dose is excreted unchanged into the urine. Oxymorphone, the metabolite primarily formed by CYP2D6, has a 40- to 60-fold higher mu-opioid receptor affinity than the parent compound. While CYP2D6-mediated gene-drug-interactions (GDIs) and drug-drug interactions (DDIs) are well-studied, they only account for a portion of the variability in oxycodone and oxymorphone exposure. The combined impact of CYP2D6-mediated GDIs and DDIs, CYP3A4-mediated DDIs, and UGT2B7 GDIs is not fully understood yet and hard to study in head-to-head clinical trials given the relatively large number of scenarios. Instead, we propose the use of a physiologically-based pharmacokinetic model that integrates available information on oxycodone's metabolism to characterize and predict the impact of DDIs and GDIs on the exposure of oxycodone and its major, pharmacologically-active metabolite oxymorphone. To this end, we first developed and verified a PBPK model for oxycodone and its metabolites using published clinical data. The verified model was then applied to determine the dose-exposure relationship of oxycodone and oxymorphone stratified by CYP2D6 and UGT2B7 phenotypes respectively, and administered perpetrators of CYP-based drug interactions. Our simulations demonstrate that the combination of CYP2D6 UM and a UGT2B7Y (268) mutation may lead to a 2.3-fold increase in oxymorphone exposure compared to individuals who are phenotyped as CYP2D6 NM / UGT2B7 NM. The extent of oxymorphone exposure increases up to 3.2-fold in individuals concurrently taking CYP3A4 inhibitors, such as ketoconazole. Inhibition of the CYP3A4 pathway results in a relative increase in the partial metabolic clearance of oxycodone to oxymorphone. Oxymorphone is impacted to a higher extent by GDIs and DDIs than oxycodone. We predict oxymorphone exposure to be highest in CYP2D6 UMs/UGT2B7 PMs in the presence of ketoconazole (strong CYP3A4 index inhibitor) and lowest in CYP2D6 PMs/UGT2B7 NMs in the presence of rifampicin (strong CYP3A4 index inducer) covering a 55-fold exposure range.


Subject(s)
Oxycodone , Oxymorphone , Humans , Oxycodone/pharmacokinetics , Oxymorphone/metabolism , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Ketoconazole/pharmacology , Cytochrome P-450 CYP3A/metabolism , Drug Interactions , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A Inducers , Guanine Nucleotide Dissociation Inhibitors , Glucuronosyltransferase/genetics
2.
Article in English | MEDLINE | ID: mdl-28483963

ABSTRACT

To make advances in the treatment of cryptococcal meningitis, it is crucial to know a given drug's free fraction that reaches the biophase. In the present study, we applied microdialysis (µD) as a tool to determine the free levels reached by voriconazole (VRC) in the brains of healthy and Cryptococcus neoformans-infected rats. The infection was induced by the intravenous (i.v.) administration of 1 × 105 CFU of yeast. The dose administered was 5 mg/kg (of body weight) of VRC, given i.v. Plasma and microdialysate samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and LC-UV methods. The free brain/free plasma ratio (fT) and population pharmacokinetic (popPK) analyses were performed to evaluate the impact of infection on PK parameters of the drug. The brain penetration ratio showed an increase on brain exposure in infected animals (fThealthy = 0.85 versus fTinfected = 1.86). The structural PK model with two compartments and Michaelis-Menten (MM) elimination describes the VRC concentration-time profile in plasma and tissue simultaneously. The covariate infection was included in volume of distribution in the peripheral compartment in healthy animals (V2) and maximum rate of metabolism (VM ). The levels reached in infected tissues were higher than the values described for MIC of VRC for Cryptococccus neoformans (0.03 to 0.5 µg ml-1), indicating its great potential to treat meningitis associated with C. neoformans.


Subject(s)
Brain/metabolism , Voriconazole/pharmacokinetics , Voriconazole/therapeutic use , Animals , Brain/drug effects , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/pathogenicity , Male , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/metabolism , Microdialysis , Rats , Rats, Wistar
3.
Cancer Chemother Pharmacol ; 68(4): 897-904, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21290248

ABSTRACT

PURPOSE: Adjuvant chemotherapy with cyclophosphamide (CYC) is used for the treatment of breast cancer. CYC is used as a racemic mixture, although preclinical data have demonstrated differences in the efficacy and toxicity of its enantiomers, with (S)-(-)-CYC exhibiting a higher therapeutic index. The present study investigated the enantioselectivity and influence of CYP2B6, CYP2C9, CYP2C19, and CYP3A on the kinetic disposition of CYC in patients with breast cancer. METHODS: Fifteen patients previously submitted to removal of the tumor and treated with racemic CYC (900 or 1,000 mg/m(2)) and epirubicin were included in the study. The in vivo activity of CYP3A was evaluated using midazolam as a marker drug. Serial blood samples were collected up to 24 h after administration of the first cycle of CYC. RESULTS: The kinetic disposition of CYC was enantioselective in patients with breast cancer, with plasma accumulation of the (S)-(-)-CYC enantiomer (AUC 195.0 vs. 174.8 µg h/mL) due to the preferential clearance of the (R)-(+)CYC enantiomer (5.1 vs. 5.7 L/h). Clearance of either CYC enantiomer did not differ between the CYP2B6, CYP2C9, and CYP2C19 genotypes or as a function of the in vivo activity of CYP3A evaluated by midazolam clearance. CONCLUSIONS: The pharmacokinetics of CYC is enantioselective in patients with breast cancer concomitantly treated with epirubicin and ondansetron. Genotyping or phenotyping did not contribute to adjustment of the CYC dose regimen in patients included in this study.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Breast Neoplasms/drug therapy , Cyclophosphamide/pharmacokinetics , Cytochrome P-450 Enzyme System/genetics , Adult , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/chemistry , Area Under Curve , Chemotherapy, Adjuvant/methods , Cyclophosphamide/administration & dosage , Cyclophosphamide/chemistry , Dose-Response Relationship, Drug , Epirubicin/administration & dosage , Female , Genotype , Humans , Midazolam/pharmacokinetics , Middle Aged , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...