Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 9: 2936-2946, 2018.
Article in English | MEDLINE | ID: mdl-30546990

ABSTRACT

Nanostructured systems, such as nanocomposites, are potential materials for usage in different fields since synergistic effects of their components at the nanoscale domain may improve physical/chemical properties when compared to individual phases. We report here the preparation and characterisation of a new nanocomposite composed of polyaniline (PANI), reduced graphene oxide (rGO) and hexaniobate (hexNb) nanoscrolls. Atomic force microscopy images show an interesting architecture of rGO flakes coated with PANI and decorated by hexNb. Such features are attributed to the high stability of the rGO flakes prepared at room temperature. Detailed characterisation by X-ray photoelectron and Raman spectroscopies indicates an intermediate reduction degree for the rGO component and high doping degree of the PANI chains compared to the neat polymer. The latter feature can be attributed to cooperative effects of PANI chains with rGO flakes and hexNb nanoscrolls, which promote conformational changes of the polymer backbone (secondary doping). Spectroscopic and electrochemistry data indicate a synergetic effect on the ternary nanocomposite, which is attributed to interactions between the components resulting from the morphological aspects. Therefore, the new nanocomposite presents promising properties for development of new materials in the film form on substrates for sensing or corrosion protection for example.

2.
J Phys Chem B ; 116(48): 14191-200, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23145481

ABSTRACT

This paper reports the spectroscopic study on the structural differences of thermally induced cross-linking segments in polyaniline in its emeraldine salt (PANI-ES) and base (PANI-EB) forms. Casting films of PANI-ES (ES-film) and PANI-EB (EB-film) were prepared and heated at 150 °C under atmospheric air for 30 min. Raman spectra excited at 632.8 nm of heated ES-film presented the characteristic bands of phenazine-like structures at 1638, 1392, and 575 cm(-1), whereas EB-film showed lower relative intensities for these bands. The lower content of phenazine-like segments in heated EB-film is related to residual polaronic segments from preparation procedures, as revealed by Raman. This statement was confirmed by a sequence of thermal and doping experiments in both films. Quantum-chemical calculations by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) showed that the phenazine-like structure presents the intense Raman band at 1350 cm(-1) due to heterocycle breathing mode, and the non-phenazine-like structure (substituted hydrophenazine-type) presents higher energy for HOMO-LUMO transition, indicating the lack of conjugation in the heterocycle compared with the phenazine-like structure. According to experimental and theoretical data reported here, it is proposed that only thermally treated PANI-ES presents phenazine-like rings, whereas PANI-EB presents heterocyclic non-aromatic structures.

3.
Dalton Trans ; 41(48): 14540-6, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23086129

ABSTRACT

Complexes of the type {[(pyS)Ru(NH(3))(4)](2)-µ-L}(n), where pyS = 4-mercaptopyridine, L = 4,4'-dithiodipyridine (pySSpy), pyrazine (pz) and 1,4-dicyanobenzene (DCB), and n = +4 and +5 for fully reduced and mixed-valence complexes, respectively, were synthesized and characterized. Electrochemical data showed that there is electron communication between the metal centers with comproportionation constants of 33.2, 1.30 × 10(8) and 5.56 × 10(5) for L = pySSpy, pz and DCB, respectively. It was also observed that the electronic coupling between the metal centers is affected by the π-back-bonding interaction toward the pyS ligand. Raman spectroscopy showed a dependence of the intensity of the vibrational modes on the exciting radiations giving support to the assignments of the electronic transitions. The degree of electron communication between the metal centers through the bridging ligands suggests that these systems can be molecular wire materials.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 71(3): 869-75, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18343714

ABSTRACT

In the present work, the resonance Raman, UV-vis-NIR and scanning electron microscopic (SEM) data of nanorods (about approximately 300 nm in diameter) and nanofibers (about approximately 93 nm in diameter) of PANI are presented and compared. The PANI samples were synthesized in aqueous media with dodecybenzenesulfonic acid (DBSA) and beta-naphtalenesulfonic acid (beta-NSA) as dopants, respectively. The presence of bands at 578, 1400 and 1, 632 cm(-1) in the Raman spectra of PANI-NSA and PANI-DBSA shows that the formation of cross-linking structures is a general feature of the PANI chains prepared in micellar media. It is proposed that these structures are responsible for the one-dimensional PANI morphology formation. In addition, the Raman band at 609 cm(-1) of PANI fibers is correlated with the extended PANI chain conformation.


Subject(s)
Aniline Compounds/chemistry , Nanotubes/chemistry , Aniline Compounds/chemical synthesis , Benzenesulfonates , Cross-Linking Reagents , Microscopy, Electron, Scanning , Molecular Structure , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology , Nanotubes/ultrastructure , Naphthalenesulfonates , Spectrophotometry , Spectrophotometry, Ultraviolet , Spectroscopy, Near-Infrared , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...