Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Foods ; 13(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672823

ABSTRACT

Avocado production is mostly confined to tropical and subtropical regions, leading to lengthy distribution channels that, coupled with their unpredictable post-harvest behavior, render avocados susceptible to significant loss and waste. To enhance the monitoring of 'Hass' avocado ripening, a data-driven tool was developed using a deep learning approach. This study involved monitoring 478 avocados stored in three distinct storage environments, using a 5-stage Ripening Index to classify each fruit's ripening phase based on their shared characteristics. These categories were paired with daily photographic records of the avocados, resulting in a database of labeled images. Two convolutional neural network models, AlexNet and ResNet-18, were trained using transfer learning techniques to identify distinct ripening indicators, enabling the prediction of ripening stages and shelf-life estimations for new unseen data. The approach achieved a final prediction accuracy of 88.8% for the ripening assessment, with 96.7% of predictions deviating by no more than half a stage from their actual classifications when considering the best side of the samples. The average shelf-life estimates based on the attributed classifications were within 0.92 days of the actual shelf-life, whereas the predictions made by the models had an average deviation of 0.96 days from the actual shelf-life.

2.
Foods ; 13(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38275695

ABSTRACT

This study explores the potential of thermosonication as an alternative to traditional heat treatments, such as pasteurization, in the processing of fruit juices. Conventional methods often lead to undesirable quality changes in fruit juices, whereas thermosonication offers promising results regarding microbial inactivation and quality preservation. This work focused on the inactivation kinetics of Listeria innocua 2030c, a surrogate for pathogenic L. monocytogenes, in kiwifruit juice using thermosonication at 45 °C, 50 °C, and 55 °C. These treatments were compared with equivalent heat treatments. Quality attributes of the juice were also evaluated to assess process efficiency. Survival data of L. innocua were fitted with the Weibull model, estimating first decimal reduction times (δ) and shape parameters (n). The results reveal temperature and process dependencies on δ, while n remains mostly temperature and treatment independent. Thermosonication outperforms heat treatment, achieving higher L. innocua reductions while retaining quality attributes like pH, soluble solid content, and total phenolics and chlorophylls. Thermosonication at 55 °C stands out, providing a 6.2-log-cycle reduction in just 3 min with superior quality retention. These findings highlight the synergistic effect of temperature and ultrasound, making mild heat processes feasible while enhancing product quality. Thermosonication, particularly at 55 °C, emerges as an effective alternative to traditional thermal treatments for fruit juices, offering improved microbial safety without compromising product quality.

3.
Foods ; 12(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37048174

ABSTRACT

The 2030 Sustainable Development Agenda calls for all social actors to contribute to significant societal and environmental issues [...].

4.
Foods ; 12(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36766150

ABSTRACT

The peels of many fruits are rich sources of nutrients, although they are not commonly consumed. If they are properly decontaminated, they can be used as healthy food ingredients reducing food waste. The objective was to apply thermosonication processes to kiwi peel and evaluate the impact on Listeria innocua survival (a non-pathogenic surrogate of L. monocytogenes) and key nutrients and quality indicators: proteins, fibers, minerals (Ca, K, Mg, Na, and P), chlorophylls, and phenolic contents. Kiwi peels were artificially inoculated with L. innocua and thermal and thermosonication treatments were performed at 55 °C and 60 °C for 30 and 15 min maximum, respectively. Bacteria were enumerated through treatment time, and quality indicators were assessed before and at the end of treatments. A Weibull model with a decimal reduction time (D-value) was successfully used in L. innocua survival data fits. Results showed that coupling temperature to ultrasound had a synergistic effect on bacteria inactivation with significant decreases in D-values. Thermosonication at 60 °C was the most effective in terms of protein, fiber, chlorophylls, and phenolics retention. Minerals were not significantly affected by all treatments. Applying thermosonication to kiwi peel was more effective for decontamination than thermal treatments at the same temperature while allowing the retention of healthy compounds.

5.
Foods ; 11(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36076860

ABSTRACT

A snack made of 36% by byproducts of grape and tomato pomaces was developed, also including other ingredients, such as oats, chia, quinoa, honey and peanut butter. The recipe was defined as tasty and healthy by a focus group. The snack was produced by using forced air at three different drying temperatures (50 °C, 60 °C and 70 °C). The Newton, Page, Henderson and Pabis, and Midilli-Kucuk models fit the drying curves well. The average values for the Newton's model drying constants were k50 = 2.71 × 10-1 ± 3 × 10-3 min-1, k60 = 2.76 10-1 ± 4 × 10-3 min-1 and k70 = 3.91 × 10-1 ± 8 × 10-3 min-1 at 50 °C, 60 °C and 70 °C, respectively. The product's quality was assessed in terms of storage with respect to water activity and texture (hardness, springiness, cohesiveness, chewiness and resilience). There were no differences among the three tested processing temperatures in terms of their influence the final product's quality. As there were no significant differences between initial and final water activity and texture attributes at any temperature and they were mainly unaltered during storage, the snack bar was considered stable during this period. This new snack, which includes byproducts from the food industry, reduces food waste and contributes to a circular economic model, simultaneously presenting environmental and economic advantages.

6.
Foods ; 11(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35627069

ABSTRACT

Melon peel is recognized as a source of healthy nutrients and oxidant compounds. Being considered a non-edible part with no profit value, large amounts of melon rinds are discharged by fruit industries. Innovative food ingredients with potential health benefits may arise if these parts were conveniently transformed. The objective was to freeze-dry small melon peel cubes to attain a potential edible matrix. An ozone pre-treatment was applied seeking decontamination purposes and quality retention. The effect of these processes was assessed in terms of physicochemical parameters (moisture content, water activity and color), bioactive compounds (total phenolics, vitamin C and chlorophylls) and antioxidant capacity, during 7 weeks of storage at room temperature. Intrinsic microflora (mesophylls, yeasts and molds) were also monitored. Results showed that the freeze-drying process allowed retention of the most bioactive compounds analyzed, except for total phenolic content. In this case, the ozone pre-treatment was important for phenolics preservation. During the storage period, ozonated samples presented a higher content of bioactive compounds. In terms of microflora, the ozone and freeze-drying effects were not significant. Freeze-drying proved to be a suitable preservation method for melon peel. The ozone impact was not relevant in terms of decontamination.

7.
Foods ; 11(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563995

ABSTRACT

Carob fruit is native to the Mediterranean region and produced mainly in Portugal, Italy, Morocco and Turkey. The production of the carob fruit in Portugal is highly extensive and sustainable. Currently, carob flour (CF) production is mainly achieved after pulp separation, despite it having been demonstrated that the seeds improve the extraction efficiency of bioactive compounds such as polyphenols, promoting human health. This study aimed to produce an integral CF through an innovative process and assess its physicochemical and bioactive properties at different particle sizes throughout simulated gastrointestinal tract (GIT) digestion. The sugar content profile obtained throughout GIT digestion indicated that sucrose, the sugar present at the highest concentration in undigested CF, was digested and broken down into simple sugars, namely glucose and fructose. The total phenolic content (TPC) and antioxidant activity obtained for the ≤100 µm fraction were in accordance and gastric digestion promoted an increase in the TPC value compared to the undigested sample. The >100 µm fractions displayed a distinct profile from the ≤100 µm fraction. This study showed that the particle size affects the sugar, antioxidant and total phenolic content of CFs and also their gastrointestinal tract digestion. The ≤100 µm fraction demonstrated the most suitable profile as a functional food ingredient.

8.
Foods ; 11(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35206016

ABSTRACT

Rapeseed meal is a by-product of the oil-producing industry with a currently underestimated application. Two protein isolates, PI2.5-8.5 or PI10.5-2.5, were obtained from industrial rapeseed meal after treatment with an aqueous ethanol solution. The alkaline-extracted proteins were sequentially precipitated by two different modes, from pH 10.5 to 2.5, and vice versa, from 2.5 to 8.5, with a step of 1 pH unit. The preparation approach influenced both the functional and antioxidant properties of the isolates. The PI10.5-2.5 exhibited higher water and oil absorption capacities than PI2.5-8.5, reaching 2.68 g H2O/g sample and 2.36 g oil/g sample, respectively. The emulsion stability of the PI2.5-8.5, evaluated after heating at 80 °C, was either 100% or close to 100% for all pH values studied (from 2 to 10), except for pH 6 where it reached 93.87%. For the PI10.5-2.5, decreases in the emulsion stability were observed at pH 8 (85.71%) and pH 10 (53.15%). In the entire concentration range, the PI10.5-2.5 exhibited a higher scavenging ability on 2,2-diphenyl-1-picryl hydrazyl (DPPH) and hydroxyl radicals than PI2.5-8.5 as evaluated by DPPH and 2-deoxyribose assays, respectively. At the highest concentration studied, 1.0%, the neutralization of DPPH radicals by PI10.5-2 reached half of that exhibited by synthetic antioxidant butylhydroxytoluene (82.65%). At the same concentration, the inhibition of hydroxyl radicals by PI10.5-2 (71.25%) was close to that achieved by mannitol (75.62%), which was used as a positive control. Established antioxidant capacities add value to the protein isolates that can thus be used as both emulsifiers and antioxidants.

9.
Ultrason Sonochem ; 78: 105743, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34525437

ABSTRACT

Ultrasounds are being considered an excellent alternative technology in juice preservation. Yet, when combined with heat treatment, the process seems to be further intensified. This work aimed to evaluate and compare the impact of ultrasounds and heat treatments, when applied alone or in combination, on Staphylococcus aureus survival in orange juice. Inoculated commercial pasteurized orange juice was treated at different times at 20, 30, 40, 50 and 60 °C. SEM analyses were applied to identify morphological changes in S. aureus cells appearance. The microbial inactivation data were fitted using two mathematical models, depending on the behaviour observed. Sonication at 20, 30, and 40 °C induced 4.02 ± 0.52, 3.80 ± 0.49 and 4.30 ± 0.74 log cycles reduction of S. aureus after treatments of 90, 60 and 60 min, respectively. The heat treatments at the same temperatures had no impact on S. aureus survival. When 50 and 60 °C were applied, more than 5-log reductions were attained for both thermosonication and heat treatments alone. A synergistic effect was observed between sonication and high temperatures. At 50 °C, the thermosonication reduced the treatment time from 60 to 35 min and the microbial load from 5.14 ± 0.08 to 10.76 ± 0.28 log cycles reduction, compared to heat treatment alone. Results from SEM images showed that cells undergo membrane damage during sonication exposure. This was observed by collapsed cells, cell disruption, and holes in the cell's membrane. Thermosonication proved to be a viable alternative to thermal pasteurization of orange juice since milder treatments can be safely applied, improving the final product quality.


Subject(s)
Citrus sinensis , Staphylococcus aureus , Colony Count, Microbial , Hot Temperature , Ultrasonics
10.
Foods ; 10(4)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808125

ABSTRACT

Fruit waste parts, particularly peel, are abundant sources of bioactive compounds. To be included in the formulation of value-added foods, peel needs to be transformed and subjected to a preservation process. Therefore, this study seeks to assess the effect of ozone on the quality and antilisterial indicators of cantaloupe melon peel paste, aiming at obtaining a product with the potential to be used as a food additive. Ozone was bubbled during 30 and 60 min, and some physicochemical characteristics (soluble solids content, pH and colour), bioactive compounds (total phenolics, chlorophylls and vitamin C) and antioxidant activity were analysed. Peel was also inoculated with Listeria innocua, used as a treatment efficiency indicator. The results indicated that, although ozone negatively affected antioxidant activity, it positively influenced all bioactive compounds analysed. An L. innocua reduction of 1.2 log cycle was achieved after ozone exposure. Ozone should be exploited as a promising technology to assure the quality/safety of cantaloupe melon peel. Indeed, if melon peel is conveniently converted into a suitable form that can be used as a food ingredient, this will promote the valorisation of waste materials with the consequent reduction of industrial by-products and new perspectives for market opportunities.

11.
Foods ; 10(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919879

ABSTRACT

The objective of this research was to evaluate the effect of drying temperature and innovative pre-treatments (i.e., microwave and ultrasound) on "Rocha" pear drying behavior and quality characteristics, such as color, total phenolic content and antioxidant activity. Experiments were carried out with pear slabs subjected to microwaves (2450 MHz, 539 W, 4 min, microwave oven) and ultrasounds (35 kHz, 10 min, in an ultrasonic bath) as well as control samples. The drying process was conducted in a tray dryer at three different temperatures (50, 55 and 60 °C) and a fixed air velocity of 0.75 m/s. Microwave technology resulted in a higher quality deterioration in dried pear samples compared to those of controls and ultrasound pre-treated samples. The combined application of ultrasound pre-treatment and the higher drying temperature of 60 °C was characterized by the lowest color changes (ΔE = 3.86 ± 0.23) and higher preservation of nutritional parameters (total phenolic content, TPC = 345.60 ± 8.99; and antioxidant activity, EC50 = 8.80 ± 0.34). The drying characteristics of pear fruits were also analyzed by taking into account empirical models, with the Page model presenting the best prediction of the drying behavior. In conclusion, ultrasound application is a promising technology to obtain healthy/nutritious dried "Rocha" pear snacks as dietary sources for consumers.

12.
Foods ; 9(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492803

ABSTRACT

The solubility of plant protein isolates is a key determinant of their potential application. Two protein isolates (PI) from ethanol-treated industrial rapeseed meal, PI10.5-2.5 and PI2.5-8.5, were prepared by sequential isoelectric precipitation of alkali-extracted proteins (pH 12) starting from pH 10.5 to 2.5 or from pH 2.5 to 8.5, respectively. Biochemical analyses revealed that PI2.5-8.5 contained a higher amount of crude protein (72.84%) than PI10.5-2.5 (68.67%). In the same protein isolate, the level of total phenols (0.71%) was almost two-fold higher than that in PI10.5-2.5 (0.42%). No glucosinolates were established in both protein isolates. SDS-PAGE analysis demonstrated that PI10.5-2.5 contained 10 to 15 kDa protein fractions in a relatively higher amount, while PI2.5-8.5 was enriched in 18 to 29 kDa protein fractions. PI10.5-2.5 exhibited high solubility, varying from 41.74% at pH 4.5 to 65.13% at pH 6.5, while PI2.5-8.5 was almost two-fold less soluble under the same conditions. Up to pH 5.5, the addition of NaCl at 0.03 and 0.25 M diminished the solubility of PI2.5-8.5, while the solubility of PI10.5-2.5 was increased. The supplementation of PI10.5-2.5 with 0.25 M NaCl enhanced the protein solubility to 56.11% at pH 4.5 and 94.26% at pH 6.5. The addition of 0.03 M NaCl also increased the solubility of this protein isolate but to a lower extent. Overall, the approach for sequential precipitation of proteins influenced the biochemical characteristics, protein fractional profile and solubility of prepared protein isolates.

13.
Food Microbiol ; 85: 103282, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31500713

ABSTRACT

Two biopreservation approaches for fresh lettuce, rocket salad, parsley and spinach were studied. The potential of Pediococcus pentosaceus DT016, as a protective culture, to suppress Listeria monocytogenes in vegetables during storage was evaluated. The pathogen numbers in the vegetables inoculated with P. pentosaceus DT016 were significantly (p < 0.01) lower throughout the storage period and, at the last storage day, a minimum difference of 1.4 log CFU/g was reported when compared with the vegetables without the protective culture. Moreover, by using two levels of L. monocytogenes (about 6 and 4 log CFU/g), it was observed that the antagonist effect of P. pentosaceus was higher for the lower pathogen numbers. The second approach evaluated a pediocin DT016 solution to inactivate and control L. monocytogenes proliferation. The pathogen load was studied after washing with: water, chlorine and the pediocin solution and along storage at 4  °C. Comparing the various washing solutions, the vegetables washed with pediocin presented significantly (p < 0.01) lower pathogen numbers throughout storage, by a minimum of 3.2 and 2.7 log CFU/g, than in vegetables washed with water and chlorine, respectively. The proposed methodologies are promising alternatives to maintain the safety of fresh vegetables during extended storage at refrigeration temperature.


Subject(s)
Antibiosis , Food Microbiology/methods , Food Preservation/methods , Listeria monocytogenes/physiology , Vegetables/microbiology , Bacterial Load , Chlorine/pharmacology , Cold Temperature , Consumer Product Safety , Food Handling/methods , Lactuca/microbiology , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Pediocins/pharmacology , Pediococcus pentosaceus/physiology , Petroselinum/microbiology , Refrigeration , Spinacia oleracea/microbiology , Water
14.
Int J Food Microbiol ; 305: 108257, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31276954

ABSTRACT

Freezing vegetables requires pre-treatments to reduce microbial load and destroy enzymes that impair the frozen product quality. So far blanching has been the most effective pre-treatment, preferred by the food industry, despite its severity: heating up to temperatures close to 100 °C for 1-3 min causes sensory and texture changes in most horticultural products. Alternative blanching treatments, using UV-C radiation combined with milder thermal treatments or with thermosonication, may improve the quality of the final frozen vegetables. Zucchini (Cucurbita pepo L.), the vegetable under study, has an availability in fresh restricted to a season, needing therefore to be often frozen to be used throughout the year. In this study, its surface was first inoculated with two vegetable contaminants, Enterococcus faecalis and Deinococcus radiodurans cells, which are resistant, respectively, to high temperatures and to radiation and then submitted to several blanching treatments, single or combined, and the effect on these microorganisms reduction was evaluated. As single treatments, water blanching (the control treatment, as it is the blanching treatment traditionally used) was applied up to 180 s at temperatures ranging from 65 to 90 °C, and UV-irradiation applied in continuous. As combined pre-treatments, water blanching combined with UV-C (continuous or in pulses), and thermosonication (20 kHz at 50% of power) combined with UV-C pulses were also studied. The continuous UV-C radiation incident irradiance was 11 W/m2 up to 180 s, and the pulses at incident radiance of 67 W/m2, lasting 3.5 s each (35 pulses). Mathematical modeling of bacterial reduction data was carried out using the Bigelow, the Weibull and Weibull modified models, and estimation of their respective kinetic parameters proved that the latter models presented a better fit below 75 °C. The best results proved to be the combination of water blanching at temperatures as low as 85 °C during <2 min with 25 pulses of UV-C (incident irradiance of 67 W/m2) or thermosonication at 90 °C also combined with UV-C pulses, both resulting in 3 log reductions of both microorganisms under study. These results proved to overcome what industry is requiring so far (a 2 log microbial reduction in 3 min), hence minimizing quality changes of frozen zucchini.


Subject(s)
Cucurbita/chemistry , Cucurbita/microbiology , Deinococcus/physiology , Enterococcus faecalis/physiology , Food Preservation/methods , Vegetables/chemistry , Vegetables/microbiology , Bacterial Load , Deinococcus/genetics , Deinococcus/isolation & purification , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Freezing , Temperature , Water/analysis
15.
J Food Sci Technol ; 56(6): 3090-3098, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31205363

ABSTRACT

A protein isolate (ERPI) was prepared from ethanol-treated rapeseed meal and used as a stabilizing agent in sunflower and rapeseed oil-in-water emulsions. The aim of the current study was to explore the influence of protein and oil concentrations on initial stability of sunflower and rapeseed oil-in-water emulsions by evaluating Gibbs free energy (ΔG) and particle size distribution. The 7-day dynamics of emulsion stability was investigated by turbidity measurement as well. A 32 factorial design was applied to assess the significance of oil (5%, 10% and 15% w/w) and ERPI protein (0.25%, 0.5% and 1.0% w/w) addition on stability of the emulsions. The results demonstrated that the increase of oil concentrations from 5 to 15% positively influenced the initial stability of sunflower and rapeseed oil-in-water emulsions. In both oil types, ERPI protein supplementation at all levels resulted in significant differences in the stability of 5% and 10% oil emulsions but did not alter the initial stability of the emulsions prepared with either 15% sunflower or rapeseed oil. With a few exceptions, there was a good agreement between Gibbs free energy data and microstructural profiles of the emulsions. Overall, emulsions with all sunflower oil concentrations and 1.0% ERPI protein exhibited better initial and a 7-day stability dynamics compared to all rapeseed oil-based emulsions. The study demonstrated the potential of ethanol-treated rapeseed meal protein isolate to serve as an emulsifying agent in sunflower and rapeseed oil containing emulsions.

16.
J Food Sci Technol ; 55(9): 3792-3798, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30150839

ABSTRACT

The use of the rapeseed meal as a source for preparation of protein-rich ingredients for the food industry is an alternative to the current limited application as a feed additive. The aim of this study was to evaluate foaming properties of an acid-soluble protein-rich ingredient (ASP) obtained from industrial rapeseed meal as a co-product of a protein isolate. Foam capacity and stability over a period of 60 min were evaluated by using volumetric and image analyzing methods. The influence of NaCl at two boundary concentrations (0.03 and 0.25 M) was studied over a pH range from 2 to 10. The ASP exhibited high foamability (> 90%), not influenced by pH or salt addition. In contrast, foam stability, measured over a 60 min period, was pH and NaCl dependent. By the end of the observation period, the addition of 0.25 M NaCl reduced the foam volume by more than 70% at all pH values. After 30 min at pH values 4, 6 and 8, which are the most common for food products, the foams without NaCl retained 51, 38 and 41% of the initial foam volume, respectively. The results were in agreement with image analysis observations where microstructure of the foams with NaCl was more heterogeneous than that of the foams without salt addition. The high foamability and relatively high foam stability at pH from 4 to 8 without NaCl addition shows that ASP could be a potential alternative to plant proteins currently used as foaming agents in the food industry.

17.
J Food Sci Technol ; 52(8): 5066-74, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26243927

ABSTRACT

The effect of UV-C treatments (0.32, 0.97, 2.56, 4.16 and 4.83 kJ.m(-2) at 254 nm) on the physical-chemical properties [colour, texture, total phenolic content (TPC), weight loss (WL)], and mesophylic counts of whole tomato, was evaluated during 15 days at 10 °C. During storage, the Ctr samples acquired faster red colour than all UV-C samples (higher a* and lower °h values). Comparing texture of Ctr and UV-C samples at 15(th) storage day, an increase of 9 and 8 % on firmness of treated samples at low UV-C intensities (0.32 and 0.97 kJ.m(-2), respectively) was observed. At the end of the storage, Ctr samples showed ca. 4 Log10 of mesophylic load, and the samples treated at 0.97 and 4.83 kJ.m(-2) revealed the lowest microbial load (1.9 and 3.2 Log10, respectively). These results indicate that UV-C radiation, at an appropriate dose, combined with low storage temperature (10 °C) are an effective method to preserve the postharvest life of tomato, without adversely affecting quality parameters.

18.
Ultrason Sonochem ; 27: 552-559, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25922160

ABSTRACT

Whole tomato fruits were treated at ultrasonic power levels from 10% to 100%, and at a constant frequency of 45 kHz, for different times (1-19 min). A central composite rotatable design (CCRD) was applied to optimise ultrasonic treatments for tomato quality (colour, texture and total phenolic content (TPC)) maintenance. According to response surface analysis, the optimal treatment parameters were 55%_10 min, 80%_15 min and 100%_19 min. At these conditions, and especially at higher power levels, a maximum retention of colour and texture, as well as an increase of TPC and microbial reduction were obtained in comparison with untreated fruits during 15 storage days at 10°C. The ultrasounds treatment was found to be effective in delaying colour development and texture losses, preserving sensorial quality of whole tomato, with increase of TPC and microbial load reduction. Moreover, this postharvest treatment can be used as an alternative for extending fresh fruits shelf-life.


Subject(s)
Food Preservation/methods , Food Storage , Solanum lycopersicum/microbiology , Ultrasonic Waves , Color , Food Quality , Fruit/chemistry , Fruit/microbiology , Solanum lycopersicum/chemistry , Phenols/analysis , Taste , Temperature
19.
Food Chem ; 144: 2-8, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24099535

ABSTRACT

This study was developed with the purpose to investigate the effect of polysaccharide/plasticiser concentration on the microstructure and molecular dynamics of polymeric film systems, using transmission electron microscope imaging (TEM) and nuclear magnetic resonance (NMR) techniques. Experiments were carried out in chitosan/glycerol films prepared with solutions of different composition. The films obtained after drying and equilibration were characterised in terms of composition, thickness and water activity. Results show that glycerol quantities used in film forming solutions were responsible for films composition; while polymer/total plasticiser ratio in the solution determined the thickness (and thus structure) of the films. These results were confirmed by TEM. NMR allowed understanding the films molecular rearrangement. Two different behaviours for the two components analysed, water and glycerol were observed: the first is predominantly moving free in the matrix, while glycerol is mainly bounded to the chitosan chain.


Subject(s)
Chitosan/chemistry , Food Packaging/instrumentation , Glycerol/chemistry , Plasticizers/chemistry , Water/analysis
20.
J AOAC Int ; 96(1): 33-6, 2013.
Article in English | MEDLINE | ID: mdl-23513954

ABSTRACT

Ethylene oxide gas is commonly used to sterilize medical devices, and concerns about using this agent on biological systems are well-established. Medical devices sterilized by ethylene oxide must be properly aerated to remove residual gas and by-products. In this work, kinetics of ethylene oxide desorption from different sterilized materials were studied in a range of aeration temperatures. The experimental data were well-described by a Fickian diffusion mass transfer behavior, and diffusivities were estimated for two textile and two polymeric materials within the temperature range of 1.5 to 59.0 degrees C. The results will allow predictions of ethylene oxide desorption, which is a key step for the design of sterilization/aeration processes, contributing to an efficient removal of residual ethylene oxide content.


Subject(s)
Ethylene Oxide/chemistry , Sterilization , Diffusion , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...