Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 11(26): 6114-6122, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37338380

ABSTRACT

In this work, we outline a simple method for synthesizing decahedral and triangular silver nanoparticles using light to tune particle shape and spectral characteristics. Notably, we were able to generate triangular silver nanoparticles with exceptional absorbance in the near-infrared (NIR) region, with high spectral overlap with the biological window, making them particularly promising for biological applications. We further demonstrate that under complementary LED illumination, these excitable plasmonic particles display exceptional antibacterial properties, several orders of magnitude more potent than similar particles under dark conditions or under illumination that does not match particle absorbance. This work demonstrates the powerful effects that LED lights can have on the antibacterial activity of AgNPs, providing an inexpensive and easily implemented route to unlocking the full potential of AgNPs in photobiological applications.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Silver/pharmacology , Particle Size , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
2.
ACS Omega ; 8(24): 21585-21593, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360451

ABSTRACT

Water decontamination remains a challenge in several developed and developing countries. Affordable and efficient approaches are needed urgently. In this scenario, heterogeneous photocatalysts appear as one of the most promising alternatives. This justifies the extensive attention that semiconductors, such as TiO2, have gained over the last decades. Several studies have evaluated their efficiency for environmental applications; however, most of these tests rely on the use of powder materials that have minimal to no applicability for large-scale applications. In this work, we investigated three fibrous TiO2 photocatalysts, TiO2 nanofibers (TNF), TiO2 on glass wool (TGW), and TiO2 in glass fiber filters (TGF). All materials have macroscopic structures that can be easily separated from solutions or that can work as fixed beds under flow conditions. We evaluated and compared their ability to bleach a surrogate dye molecule, crocin, under batch and flow conditions. Using black light (UVA/visible), our catalysts were able to bleach a minimum of 80% of the dye in batch experiments. Under continuous flow experiments, all catalysts could decrease dye absorption under shorter irradiation times: TGF, TNF, and TGW could, respectively, bleach 15, 18, and 43% of the dye with irradiation times as short as 35 s. Catalyst comparison was based on the selection of physical and chemical criteria relevant for application on water remediation. Their relative performance was ranked and applied in a radar plot. The features evaluated here had two distinct groups, chemical performance, which related to the dye degradation, and mechanical properties, which described their applicability in different systems. This comparative analysis gives insights into the selection of the right flow-compatible photocatalyst for water remediation.

3.
Photochem Photobiol ; 99(2): 706-715, 2023 03.
Article in English | MEDLINE | ID: mdl-35929341

ABSTRACT

Given the current grave problems with antibiotic resistance, the discovery of novel, unconventional antibacterial drugs is not just important but also urgent. In this contribution, we report on the synthesis and testing of several composite nanomaterials that may find applications as therapeutic drugs or surface disinfectants. These materials are based on magnetic nanostructures coated with lignin, for example, lignin@FeCo. The magnetic properties of these nanocomposites facilitate removal or localization, whereas the lignin shell provides biocompatibility. These nanomaterials are mild antibacterials in the absence of light, but when illuminated become powerful antibacterial agents with typically ≥6 log units of bacterial reduction in 1-5 min of irradiation. These materials are strongly absorbing, including in the very useful NIR biological window, which we illustrate using 810 nm LED irradiation. We also show that in the short time required for antibacterial action, thermal changes are very small (≤5°C). Further, biocompatibility tests using fibroblasts show very limited cell damage and no enhanced adverse effect during 810 nm NIR illumination. As a surface coating for the active material, lignin provides a "trojan horse" strategy to facilitate the antibacterial action.


Subject(s)
Magnetite Nanoparticles , Nanocomposites , Nanoparticles , Lignin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Nanocomposites/chemistry
4.
Front Microbiol ; 11: 574550, 2020.
Article in English | MEDLINE | ID: mdl-33488531

ABSTRACT

Rock phosphate (RP) is a natural source of phosphorus for agriculture, with the advantage of lower cost and less impact on the environment when compared to synthetic fertilizers. However, the release of phosphorus (P) from RP occurs slowly, which may limit its short-term availability to crops. Hence, the use of P-solubilizing microorganisms to improve the availability of P from this P source is an interesting approach, as microorganisms often perform other functions that assist plant growth, besides solubilizing P. Here, we describe the characterization of 101 bacterial isolates obtained from the rhizosphere and endosphere of maize plants for their P solubilizing activity in vitro, their growth-promoting activity on millet plants cultivated in soil amended with RP, and their gene content especially associated with phosphate solubilization. For the in vitro solubilization assays, two mineral P sources were used: rock phosphate from Araxá (Brazil) mine (AP) and iron phosphate (Fe-P). The amounts of P released from Fe-P in the solubilization assays were lower than those released from AP, and the endophytic bacteria outperformed the rhizospheric ones in the solubilization of both P sources. Six selected strains were evaluated for their ability to promote the growth of millet in soil fertilized with a commercial rock phosphate (cRP). Two of them, namely Bacillus megaterium UFMG50 and Ochrobactrum pseudogrignonense CNPMS2088, performed better than the others in the cRP assays, improving at least six physiological traits of millet or P content in the soil. Genomic analysis of these bacteria revealed the presence of genes related to P uptake and metabolism, and to organic acid synthesis. Using this approach, we identified six potential candidates as bioinoculants, which are promising for use under field conditions, as they have both the genetic potential and the experimentally demonstrated in vivo ability to improve rock phosphate solubilization and promote plant growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...