Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 92(1): 95-109, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28715118

ABSTRACT

The transition from flowering to fruit production, namely fruit set, is crucial to ensure successful sexual plant reproduction. Although studies have described the importance of hormones (i.e. auxin and gibberellins) in controlling fruit set after pollination and fertilization, the role of microRNA-based regulation during ovary development and fruit set is still poorly understood. Here we show that the microRNA159/GAMYB1 and -2 pathway (the miR159/GAMYB1/2 module) is crucial for tomato ovule development and fruit set. MiR159 and SlGAMYBs were expressed in preanthesis ovaries, mainly in meristematic tissues, including developing ovules. SlMIR159-overexpressing tomato cv. Micro-Tom plants exhibited precocious fruit initiation and obligatory parthenocarpy, without modifying fruit shape. Histological analysis showed abnormal ovule development in such plants, which led to the formation of seedless fruits. SlGAMYB1/2 silencing in SlMIR159-overexpressing plants resulted in misregulation of pathways associated with ovule and female gametophyte development and auxin signalling, including AINTEGUMENTA-like genes and the miR167/SlARF8a module. Similarly to SlMIR159-overexpressing plants, SlGAMYB1 was downregulated in ovaries of parthenocarpic mutants with altered responses to gibberellins and auxin. SlGAMYBs likely contribute to fruit initiation by modulating auxin and gibberellin responses, rather than their levels, during ovule and ovary development. Altogether, our results unveil a novel function for the miR159-targeted SlGAMYBs in regulating an agronomically important trait, namely fruit set.


Subject(s)
Gene Expression Regulation, Plant , MicroRNAs/genetics , Plant Growth Regulators/metabolism , Solanum lycopersicum/genetics , Transcription Factors/metabolism , Down-Regulation , Flowers/cytology , Flowers/genetics , Flowers/growth & development , Fruit/cytology , Fruit/genetics , Fruit/growth & development , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Solanum lycopersicum/cytology , Solanum lycopersicum/growth & development , Ovule/cytology , Ovule/genetics , Ovule/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Pollination , RNA, Plant/genetics , Transcription Factors/genetics
3.
BMC Plant Biol ; 16: 40, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26841873

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are important regulatory elements of gene expression. Similarly to coding genes, miRNA genes follow a birth and death pattern of evolution likely reflecting functional relevance and divergence. For instance, miRNA529 is evolutionarily related to miRNA156 (a highly conserved miRNA in land plants), but it is lost in Arabidopsis thaliana. Interestingly, both miRNAs target sequences overlap in some members of the SQUAMOSA promoter-binding protein like (SPL) family, raising important questions regarding the diversification of the miR156/miR529-associated regulatory network in land plants. RESULTS: In this study, through phylogenic reconstruction of miR156/529 target sequences from several taxonomic groups, we have found that specific eudicot SPLs, despite miRNA529 loss, retained the corresponding target site. Detailed molecular evolutionary analyses of miR156/miR529-target sequence showed that loss of miR529 in core eudicots, such as Arabidopsis, is correlated with a more relaxed selection of the miRNA529 specific target element, while miRNA156-specific target sequence is under stronger selection, indicating that these two target sites might be under distinct evolutionary constraints. Importantly, over-expression in Arabidopsis of MIR529 precursor from a monocot, but not from a basal eudicot, demonstrates specific miR529 regulation of AtSPL9 and AtSPL15 genes, which contain conserved responsive elements for both miR156 and miR529. CONCLUSIONS: Our results suggest loss of functionality of MIR529 genes in the evolutionary history of eudicots and show that the miR529-responsive element present in some eudicot SPLs is still functional. Our data support the notion that particular miRNA156 family members might have compensated for the loss of miR529 regulation in eudicot species, which concomitantly may have favored diversification of eudicot SPLs.


Subject(s)
Embryophyta/genetics , Evolution, Molecular , MicroRNAs , RNA, Plant , Genes, Plant
4.
J Plant Physiol ; 188: 89-95, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26473454

ABSTRACT

Flavonoids are a class of distinct compounds produced by plant secondary metabolism that inhibit or promote plant development and have a relationship with auxin transport. We showed that, in terms of root development, Copaifera langsdorffii leaf extracts has an inhibitory effect on most flavonoid components compared with the application of exogenous flavonoids (glycosides and aglycones). These compounds alter the pattern of expression of the SHORT-ROOT and HD-ZIP III transcription factor gene family and cause morpho-physiological alterations in sorghum roots. In addition, to examine the flavonoid auxin interaction in stress, we correlated the responses with the effects of exogenous application of auxin and an auxin transport inhibitor. The results show that exogenous flavonoids inhibit primary root growth and increase the development of lateral roots. Exogenous flavonoids also change the pattern of expression of specific genes associated with root tissue differentiation. These findings indicate that flavonoid glycosides can influence the polar transport of auxin, leading to stress responses that depend on auxin.


Subject(s)
Allelopathy/drug effects , Flavonoids/pharmacology , Gene Expression Regulation, Plant/drug effects , Sorghum/drug effects , Biological Transport/drug effects , Fabaceae/chemistry , Indoleacetic Acids/metabolism , Plant Extracts/pharmacology , Plant Growth Regulators/metabolism , Plant Leaves/chemistry , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Seeds/drug effects , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Sorghum/genetics , Sorghum/growth & development , Sorghum/metabolism
5.
Plant J ; 78(4): 604-18, 2014 May.
Article in English | MEDLINE | ID: mdl-24580734

ABSTRACT

Fruit ripening in tomato (Solanum lycopersicum L.) is well understood at the molecular level. However, information regarding genetic pathways associated with tomato ovary and early fruit development is still lacking. Here, we investigate the possible role(s) of the microRNA156/SQUAMOSA promoter-binding protein-like (SPL or SBP box) module (miR156 node) in tomato ovary development. miR156-targeted S. lycopersicum SBP genes were dynamically expressed in developing flowers and ovaries, and miR156 was mainly expressed in meristematic tissues of the ovary, including placenta and ovules. Transgenic tomato cv. Micro-Tom plants over-expressing the AtMIR156b precursor exhibited abnormal flower and fruit morphology, with fruits characterized by growth of extra carpels and ectopic structures. Scanning electron microscopy and histological analyses showed the presence of meristem-like structures inside the ovaries, which are probably responsible for the ectopic organs. Interestingly, expression of genes associated with meristem maintenance and formation of new organs, such as LeT6/TKN2 (a KNOX-like class I gene) and GOBLET (a NAM/CUC-like gene), was induced in developing ovaries of transgenic plants as well as in the ovaries of the natural mutant Mouse ear (Me), which also displays fruits with extra carpels. Conversely, expression of the MADS box genes MACROCALYX (MC) and FUL1/TDR4, and the LEAFY ortholog FALSIFLORA, was repressed in the developing ovaries of miR156 over-expressors, suggesting similarities with Arabidopsis at this point of the miR156/SPL pathway but with distinct functional consequences in reproductive development. Altogether, these observations suggest that the miR156 node is involved in maintenance of the meristematic state of ovary tissues, thereby controlling initial steps of fleshy fruit development and determinacy.


Subject(s)
Flowers/genetics , Fruit/genetics , MicroRNAs/genetics , Plant Proteins/genetics , Solanum lycopersicum/genetics , Base Sequence , Flowers/growth & development , Flowers/metabolism , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , In Situ Hybridization , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , RNA Precursors/genetics , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Fish Physiol Biochem ; 38(5): 1487-96, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22527611

ABSTRACT

The matrinchã Brycon amazonicus, a commercially important freshwater fish resource, has no heteromorphic sex chromosomes so far described. In the present study, we performed a screening of sex-associated DNA markers in this species, through the use of a random amplified polymorphic DNA (RAPD) assay and a genomic DNA restriction digestion analysis. DNA digestions evidenced no differences between sexes. Sixty-six random primers were used in pooled and individual DNA samples of males and females, and the analysis of the RAPD fingerprints revealed one female sex-associated band. Cloning and sequencing of this band led to the identification of two distinct DNA segments. While one of the isolated fragments showed a significant identity with a described protein gene (phosphatidylinositol glycan anchor biosynthesis, class W), the other fragment, composed of 535 bp, corresponds to a novel DNA marker. Further experiments were performed with this second DNA fragment in order to verify its sex-specificity. Data on dot blot hybridization, using total DNA of both sexes, confirmed its female-specificity in B. amazonicus. A primer set was designed based on its sequence data and used in PCR with DNA samples of this species, leading to diagnose the animals' sexes with a 100 % overall accuracy through a sequence characterized amplified region approach. No amplification results were found for two other species of the genus--B. orbignyanus and B. lundii. The obtained data can lead to the hypothesis that B. amazonicus may present heteromorphic sex chromosomes that should be in an early phase of differentiation.


Subject(s)
Characiformes/genetics , DNA Fragmentation , DNA/genetics , Animals , Female , Genetic Markers , Genome/genetics , Male , Random Amplified Polymorphic DNA Technique/veterinary , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...