Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 111(2): 234-244, 2023 02.
Article in English | MEDLINE | ID: mdl-36239143

ABSTRACT

Microgrooved surfaces are recognized as an important strategy of tissue engineering to promote the alignment of bone cells. In this work, we have investigated the mechanical and morphological aspects of osteoblasts cells after interaction with different micro-structured polymeric surfaces. Femtosecond laser writing technique was used for the construction of circular and parallel microgrooved patterns in biocompatible polymeric surfaces based on pentaerythritol triacrylate. Additionally, we have studied the influence of the biocompatible TiO2 nanocrystals (NCs) related to the cell behavior, when incorporated to the photoresin. The atomic force microscopy technique was used to investigate the biomechanical reaction of the human osteoblast-like MG-63 cells for the different microgroove. It was demonstrated that osteoblasts grown on circular microgrooved surfaces exhibited significantly larger Young's modulus compared to cells sown on flat films. Furthermore, we could observe that TiO2 NCs improved the circular microgrooves effects, resulting in more populated sites, 34% more elongated cells, and increasing the cell stiffness by almost 160%. These results can guide the design and construction of effective scaffold surfaces with circular microgrooves for tissue engineering and bone regeneration.

2.
FEBS Lett ; 596(13): 1700-1719, 2022 07.
Article in English | MEDLINE | ID: mdl-35490377

ABSTRACT

Trophoblast cell differentiation is of paramount importance for successful pregnancy. Krüppel-like factor 6 (KLF6), a transcription factor with diverse roles in cell physiology and tumor biology, is required for trophoblast differentiation through the syncytial pathway. Herein, we demonstrate that extravillous trophoblast (EVT) cell migration and mesenchymal phenotype are increased upon KLF6 downregulation or the expression of a deletion mutant lacking its transcriptional regulatory domain (KΔac). Raman spectroscopy revealed molecular modifications compatible with increased differentiation in cells stably expressing the KΔac mutant. Moreover, abnormally invasive placenta showed lower KLF6 immunostaining compared with the normal placenta. Thus, impaired KLF6 expression or function stimulates EVT migration and differentiation in vitro and may contribute to the physiopathology of the abnormally invasive placenta.


Subject(s)
Placenta , Trophoblasts , Cell Differentiation/genetics , Cell Movement/genetics , Female , Gene Expression Regulation , Humans , Kruppel-Like Factor 6/genetics , Kruppel-Like Factor 6/metabolism , Placenta/metabolism , Pregnancy , Trophoblasts/metabolism
3.
Nanotechnology ; 33(23)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35189601

ABSTRACT

In this research, we have synthesized carbon dots (CDs) co-doped with nitrogen and sulfur by facile hydrothermal method, using citric acid and cysteine as carbon source. The effect of solid-state thermic treatment (STT) at 303-453 K on the size, surface, fluorescence and cellular cytotoxicity of the CDs were systematically investigated. Through a simple STT, it was possible to tune surface states and the average size of the CDs, causing a permanent red shift. Initially, CDs showed a decrease in cell viability with increasing concentration. However, after STT, its viability remained constant with an increase in concentration. Here, we show the possibility to label the cells cytoplasm according to the CDs fluorescence emission before (blue emission) and after STT (red emission). The CDs studied in this paper show selective luminescence properties, which are fundamental for any cell imaging application.

4.
J Trace Elem Med Biol ; 71: 126928, 2022 May.
Article in English | MEDLINE | ID: mdl-35032836

ABSTRACT

BACKGROUND: Thimerosal (TM) is an organic mercury compound used as a preservative in many pharmacological inputs. Mercury toxicity is related to structural and functional changes in macromolecules such as hemoglobin (Hb) in erythrocytes (Ery). METHOD: Human Hb and Ery were used to evaluate O2 uptake based on the TM concentration, incubation time, and temperature. The influence of TM on the sulfhydryl content, production of reactive oxygen species (ROS), and membrane fragility was also evaluated. Raman spectra and atomic force microscopy (AFM) profiles for Ery in the presence and absence of TM were calculated, and docking studies were performed. RESULTS: At 37 °C, with 2.50 µM TM (higher concentration) and after 5 min of incubation in Hb and Ery, we observed a reduction in O2 uptake of up to 50 %, while HgCl2, which was used as a positive control, showed a reduction of at least 62 %. Total thiol assays in the presence of NEM (thiol blocker) quantified the preservation of almost 60 % of free SH in Ery. Based on the Raman spectrum profile from Ery-TM, structural differences in the porphyrinic ring and the membrane lipid content were confirmed. Finally, studies using AFM showed changes in the morphology and biomechanical properties of Ery. Theoretical studies confirmed these experimental results and showed that the cysteine (Cys) residues present in Hb are involved in the binding of TM. CONCLUSION: Our results show that TM binds to human Hb via free Cys residues, causing conformation changes and leading to harmful effects associated with O2 transport.


Subject(s)
Mercury Compounds , Mercury , Humans , Thimerosal/pharmacology , Thimerosal/metabolism , Erythrocytes/metabolism , Cysteine , Hemoglobins , Sulfhydryl Compounds/metabolism
5.
Placenta ; 117: 139-149, 2022 01.
Article in English | MEDLINE | ID: mdl-34894601

ABSTRACT

INTRODUCTION: Villous cytotrophoblast (vCTB) cells fuse to generate and maintain the syncytiotrophoblast layer required for placental development and function. Krüppel-like factor 6 (KLF6) is a ubiquitous transcription factor with an N-terminal acidic transactivation domain and a C-terminal zinc finger DNA-binding domain. KLF6 is highly expressed in placenta, and it is required for proper placental development. We have demonstrated that KLF6 is necessary for cell fusion in human primary vCTBs, and in the BeWo cell line. MATERIALS AND METHODS: Full length KLF6 or a mutant lacking its N-terminal domain were expressed in BeWo cells or in primary vCTB cells isolated from human term placentas. Cell fusion, gene and protein expression, and cell proliferation were analyzed. Moreover, Raman spectroscopy and atomic force microscopy (AFM) were used to identify biochemical, topography, and elasticity cellular modifications. RESULTS: The increase in KLF6, but not the expression of its deleted mutant, is sufficient to trigger cell fusion and to raise the expression of ß-hCG, syncytin-1, the chaperone protein 78 regulated by glucose (GRP78), the ATP Binding Cassette Subfamily G Member 2 (ABCG2), and Galectin-1 (Gal-1), all molecules involved in vCTB differentiation. Raman and AFM analysis revealed that KLF6 reduces NADH level and increases cell Young's modulus. KLF6-induced differentiation correlates with p21 upregulation and decreased cell proliferation. Remarkable, p21 silencing reduces cell fusion triggered by KLF6 and the KLF6 mutant impairs syncytialization and decreases syncytin-1 and ß-hCG expression. DISCUSSION: KLF6 induces syncytialization through a mechanism that involves its regulatory transcriptional domain in a p21-dependent manner.


Subject(s)
Cell Fusion , Kruppel-Like Factor 6/metabolism , Trophoblasts/metabolism , Cell Line, Tumor , Humans , Kruppel-Like Factor 6/chemistry , Protein Domains
6.
Front Physiol ; 12: 799653, 2021.
Article in English | MEDLINE | ID: mdl-35185601

ABSTRACT

Preeclampsia (PE) is a hypertensive disease of pregnancy-associated with placental cell death and endoplasmic reticulum (ER) stress. It is unknown whether systemic factors aggravate placental dysfunction. We investigated whether serum factors in pregnant women with PE activate ER stress and unfolded protein responses (UPRs) in placental explants and trophoblast cells lineage. We cultured placental explants from third-trimester term placentas from control non-preeclamptic (NPE) pregnant women with serum from women with PE or controls (NPE). In PE-treated explants, there was a significant increase in gene expression of GADD34, CHOP, and SDF2. At the protein level, GRP78, SDF2, p-eIF2α, and p-eIF2α/eIF2α ratio were also augmented in treated explants. Assays were also performed in HTR8/SV-neo trophoblast cell line to characterize the putative participation of trophoblast cells. In PE serum-treated protein levels of p-eIF2a and the ratio p-elF2 α/elF2α increased after 12 h of treatment, while the gene expression of GADD34, ATF4, and CHOP was greater than control. Increased expression of SDF2 was also detected after 24 h-cultured HTR8/SV-neo cells. PE serum increased sFLT1 gene expression and decreased PlGF gene expression in placental explants. Morphologically, PE serum increased the number of syncytial knots and reduced placental cell metabolism and viability. Analysis of the serum of pregnant women with PE through Raman spectroscopy showed changes in amino acids, carotenoids, lipids, and DNA/RNA, which may be associated with the induction of ER stress found in chorionic villi treated with this serum. In conclusion, this study provides evidence that the serum of pregnant women with PE may impact placental villi changing its morphology, viability, and secreted functional factors while triggers ER stress and an UPR. The differences between PE and control sera include molecules acting as inducing factors in these processes. In summary, the results obtained in our assays suggest that after the development of PE, the serum profile of pregnant women may be an additional factor that feeds a continuous imbalance of placental homeostasis. In addition, this study may expand the possibilities for understanding the pathogenesis of this disorder.

7.
RSC Adv ; 11(5): 2767-2773, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-35424233

ABSTRACT

We report the synthesis of chitosan-derived aminated carbon dots with dual fluorescence bands and their influence on the morphology, absorption and emission spectral profiles as well as on the band gap energy in relation to thermal treatment after synthesis. To unravel these changes, we performed spectroscopic measurements in the solid state on two stages at temperatures ranging from 303 to 453 K. For the first heating stage, the emission spectrum showed a 20 nm red shift and a new absorption band at 350 nm, possibly related to new bonds and/or nitrogenous molecular fractions. For the second heating stage in the same temperature range, no displacements in the emission spectrum were observed and both the energy gap and bandwidths for the two emission bands are practically constant, indicating a change nitrogen moiety exposed on the surface. Furthermore, through atomic force microscopy it was noted that the morphology and size of the CDs were not significantly affected by the increase in temperature. It is noteworthy that the values of the Huang-Rhys factor, respectively, 2.584 × 10-10 and 2.315 × 10-9 for band I and II emission after the second heating indicate a mechanism of weak electron-phonon interactions. This work may open a novel perspective for the development of new surface modulation strategies for carbon dots subjected to thermal treatment in the solid state.

8.
Analyst ; 144(17): 5232-5244, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31360935

ABSTRACT

Leishmaniasis comprises a group of infectious diseases with worldwide distribution, of which both the visceral and cutaneous forms are caused by Leishmania parasites. In the absence of vaccines, efficacious chemotherapy remains the basis for leishmaniasis control. The available drugs are expensive and associated with several secondary adverse effects. Due to these limitations, the development of new antileishmanial compounds is imperative, and plants offer various perspectives in this regard. The present study evaluated the in vitro leishmanicidal activity of flavonoids isolated from Solanum paludosum Moric. and investigated the mechanisms of cell death induced by them. These compounds were evaluated in vitro for their antileishmanial activity against Leishmania amazonensis promastigotes and they showed prominent leishmanicidal activity. The EtOAc fraction, gossypetin 3,7,8,4'-tetra-O-methyl ether (1), and kaempferol 3,7-di-O-methyl ether (3) were selected to be used in an in vitro assay against L. amazonensis amastigotes and cell death assays. The flavonoids (1) and (3) presented significant activity against L. amazonensis amastigotes, exhibiting the IC50 values of 23.3 ± 4.5 µM, 34.0 ± 9.6 µM, and 10.5 ± 2.5 µM for the EtOAc fraction, (1), and (3), respectively, without toxic effects to the host cells. Moreover, (1) and (3) induced blocked cell cycle progression at the G1/S transition, ultimately leading to G1/G0 arrest. Flavonoid (3) also induced autophagy. Using Raman spectroscopy in conjunction with principal component analysis, the biochemical changes in the cellular components induced by flavonoids (1) and (3) were presented. The obtained results indicated that the mechanisms of action of (1) and (3) occurred through different routes. The results support that the flavonoids derived from S. paludosum can become lead molecules for the design of antileishmanial prototypes.


Subject(s)
Antiprotozoal Agents/pharmacology , Cell Death/drug effects , Flavonoids/pharmacology , Flow Cytometry/methods , Leishmania/drug effects , Animals , Antiprotozoal Agents/chemistry , Autophagy/drug effects , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical , Flavonoids/chemistry , Kaempferols/chemistry , Kaempferols/pharmacology , Leishmania/cytology , Macrophages/cytology , Macrophages/drug effects , Mice , Spectrum Analysis, Raman , Streptophyta/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...