Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Gene ; 863: 147302, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36813062

ABSTRACT

INTRODUCTION: Genetic-association studies have shown that some polymorphisms are associated with different aspects of athletic performance, including very specific features, such as players' position in team sports, like soccer, rugby, and Australian football. However, this type of association has not been investigated in Basketball yet. The present study analyzed the association of ACTN3 R577X, AGT M268T, ACE I/D and BDKRB2+9/-9 polymorphisms with the position of basketball players. METHODS: One hundred fifty-two male athletes from 11 teams of the first division of Brazilian Basketball League and 154 male Brazilian controls were genotyped. The analyses of the ACTN3 R577X and AGT M268T were performed by the allelic discrimination method, while ACE I/D and BDKRB2+9/-9 by conventional PCR followed by electrophorese in agarose gel. RESULTS: The results showed a significant effect of height on all positions and an association between the genetic polymorphisms analyzed and basketball positions. In addition, a significantly higher frequency of ACTN3 577XX genotype was observed in Point Guards. Also, compared to Point Guard, ACTN3 RR and RX were more prevalent in the Shooting Guard and Small Forward group and RR genotype was also more prevalent in the Power Forward and Center group. CONCLUSION: The main finding of our study was the positive association of ACTN3 R577X polymorphism and basketball playing position, and a suggestion of genotypes related to strength/power performance with post players and genotypes related to endurance performance with point guard players.


Subject(s)
Basketball , Humans , Male , Brazil , Actinin/genetics , Australia , Polymorphism, Genetic , Athletes , Genotype
2.
Front Genet ; 10: 984, 2019.
Article in English | MEDLINE | ID: mdl-31708962

ABSTRACT

Muscle damage is one of the most important factors that affect muscle fatigue during endurance exercise. Recent evidence suggests that the renin-angiotensin system impacts on skeletal muscle wasting. The aim of this study was to determine association between the AGT Met235Thr, ACE I/D and BDKRB2 -9/+9 polymorphisms with inflammation, myocardial and muscle injury induced by endurance exercise. Eighty-one Brazilian male runners participated in this study and completed the International Marathon of Sao Paulo. Muscle and myocardial damage markers (alanine transaminase, ALT, aspartate transaminase, AST, lactic dehydrogenase, LDH, creatine kinase, CK, Troponin, pro BNP, myoglobin, and CK-MB) and inflammatory mediators (IL-6, IL-8, IL-10, IL12p70, IL1ß, and TNF-α) were determined one day before, immediately after, one day after, and three days after the event. Muscle damage was also determined fifteen days after race and angiotensinogen (AGT) Met235Thr, angiotensin-converting enzyme (ACE) I/D, and Bradykinin B2 receptor (BDKRB2) -9/+9 polymorphisms were determined. Marathon race participation induced an increase in all muscle damage and inflammatory markers evaluated (p < 0.0001). The muscle damage markers, troponin and pro BNP, CK and LDH and inflammatory markers, IL-6, IL-8, IL-1ß and IL-10 were also higher in ACE II genotype immediately after race, compared to DD genotype. The percentage of runners higher responders (>500U/I) to CK levels was higher for II genotypes (69%) compared to DD and ID genotypes (38% and 40%, respectively) immediately after. Troponin, pro BNP and IL-1ß, IL-8 levels were also elevated in AGT MM genotype compared to TT genotype athletes after and/or one day after race. BDKRB2 -9/-9 had pronounced response to LDH, CK, CK-MB and ALT and AST activities, myoglobin, troponin, IL-6, IL-8 levels immediately, one day and/or three days after race. The percentage of runners higher responders (>500U/I) to CK levels was greater for -9-9 and -9+9 genotypes (46 and 48%, respectively) compared to +9+9 genotypes (31%) immediately after. ACE II, AGT MM, and BDKRB2 -9-9 genotypes may increase the susceptibility to inflammation, muscle injury after endurance exercise and could be used to predict the development of clinical conditions associated with muscle damage and myocardial injury.

3.
Front Genet ; 10(984): 1-12, out., 2019. tab., graf.
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1049930

ABSTRACT

ABSTRACT: Muscle damage is one of the most important factors that affect muscle fatigue during endurance exercise. Recent evidence suggests that the renin-angiotensin system impacts on skeletal muscle wasting. The aim of this study was to determine association between the AGT Met235Thr, ACE I/D and BDKRB2 -9/+9 polymorphisms with inflammation, myocardial and muscle injury induced by endurance exercise. Eighty-one Brazilian male runners participated in this study and completed the International Marathon of Sao Paulo. Muscle and myocardial damage markers (alanine transaminase, ALT, aspartate transaminase, AST, lactic dehydrogenase, LDH, creatine kinase, CK, Troponin, pro BNP, myoglobin, and CK-MB) and inflammatory mediators (IL-6, IL-8, IL-10, IL12p70, IL1ß, and TNF-α) were determined one day before, immediately after, one day after, and three days after the event. Muscle damage was also determined fifteen days after race and angiotensinogen (AGT) Met235Thr, angiotensin-converting enzyme (ACE) I/D, and Bradykinin B2 receptor (BDKRB2) -9/+9 polymorphisms were determined. Marathon race participation induced an increase in all muscle damage and inflammatory markers evaluated (p < 0.0001). The muscle damage markers, troponin and pro BNP, CK and LDH and inflammatory markers, IL-6, IL-8, IL-1ß and IL-10 were also higher in ACE II genotype immediately after race, compared to DD genotype. The percentage of runners higher responders (>500U/I) to CK levels was higher for II genotypes (69%) compared to DD and ID genotypes (38% and 40%, respectively) immediately after. Troponin, pro BNP and IL-1ß, IL-8 levels were also elevated in AGT MM genotype compared to TT genotype athletes after and/or one day after race. BDKRB2 -9/-9 had pronounced response to LDH, CK, CK-MB and ALT and AST activities, myoglobin, troponin, IL-6, IL-8 levels immediately, one day and/or three days after race. The percentage of runners higher responders (>500U/I) to CK levels was greater for -9-9 and -9+9 genotypes (46 and 48%, respectively) compared to +9+9 genotypes (31%) immediately after. ACE II, AGT MM, and BDKRB2 -9-9 genotypes may increase the susceptibility to inflammation, muscle injury after endurance exercise and could be used to predict the development of clinical conditions associated with muscle damage and myocardial injury. (AU)


Subject(s)
Genetic Variation , Exercise , Angiotensinogen , Cytokines , Receptor, Bradykinin B2
4.
Front Physiol ; 10: 697, 2019.
Article in English | MEDLINE | ID: mdl-31244673

ABSTRACT

α-Actinin-3 (ACTN3 R577X, rs.1815739) polymorphism is a genetic variation that shows the most consistent influence on metabolic pathway and muscle phenotype. XX genotype is associated with higher metabolic efficiency of skeletal muscle; however, the role of ACTN3 polymorphism in oxygen transport and utilization system has not yet been investigated. Therefore, the aim of this study was to determine the influence of ACTN3 polymorphisms on hematological and iron metabolism response induced by marathon race. Eighty-one Brazilian amateur male endurance runners participated in the study. Blood samples and urine were collected before; immediately after; and 1, 3, and 15 days after the marathon race. Urine, hematological parameters, iron metabolism, and ACTN3 genotyping analyses were performed. The marathon race induced a decrease in erythrocytes, Hb, and Ht, and an increase in hematuria, creatinine, myoglobin, red cell distribution width, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, direct and indirect bilirubin and erythropoietin. Moreover, an elevation immediately or 1 day after the marathon race follows a reduction 3 or 15 days after the marathon race were observed on transferrin saturation and iron and transferrin levels. Hematological parameters and iron metabolism changes induced by marathon race were not observed in XX genotypes. Hematuria and decreased erythrocytes, Hb, Ht, and iron and transferrin levels were observed only in RR and/or RX genotypes but not in XX genotypes. The percentage of runners with hematuria, leukocyturia, iron deficiency, creatinine, myoglobin, and bilirubin imbalance was higher in RR compared to XX genotypes. ACTN3 polymorphism is associated with iron metabolism and hematological responses after endurance exercise. Despite these results being based on a small sample, they highlight a protective role of the XX genotype on hematological and renal changes induced by long-distance exercise. Therefore, these findings should be further replicated.

5.
Front Physiol ; 10(697)Jun. 2019. tab
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1009235

ABSTRACT

αlpha-Actinin-3 (ACTN3 R577X, rs.1815739) polymorphism is a genetic variation that shows the most consistent influence on metabolic pathway and muscle phenotype. XX genotype is associated with higher metabolic efficiency of skeletal muscle; however, the role of ACTN3 polymorphism in oxygen transport and utilization system has not yet been investigated. Therefore, the aim of this study was to determine the influence of ACTN3 polymorphisms on hematological and iron metabolism response induced by marathon race. Eighty-one Brazilian amateur male endurance runners participated in the study. Blood samples and urine were collected before; immediately after; and 1, 3, and 15 days after the marathon race. Urine, hematological parameters, iron metabolism, and ACTN3 genotyping analyses were performed. The marathon race induced a decrease in erythrocytes, Hb, and Ht, and an increase in hematuria, creatinine, myoglobin, red cell distribution width, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, direct and indirect bilirubin and erythropoietin. Moreover, na elevation immediately or 1 day after the marathon race follows a reduction 3 or 15 days after the marathon race were observed on transferrin saturation and iron and transferrin levels. Hematological parameters and iron metabolism changes induced by marathon race were not observed in XX genotypes. Hematuria and decreased erythrocytes, Hb, Ht, and iron and transferrin levels were observed only in RR and/or RX genotypes but not in XX genotypes. The percentage of runners with hematuria, leukocyturia, iron deficiency, creatinine, myoglobin, and bilirubin imbalance was higher in RR compared to XX genotypes. ACTN3 polymorphism is associated with iron metabolism and hematological responses after endurance exercise. Despite these results being based on a small sample, they highlight protective role of the XX genotype on hematological and renal changes induced by long-distance exercise. Therefore, these findings should be further replicated.(AU)


Subject(s)
Humans , High-Intensity Interval Training , Genotype , Hematology , Metabolism
6.
Motriz (Online) ; 24(2): e101858, 2018. tab, graf
Article in English | LILACS | ID: biblio-955136

ABSTRACT

Abstract AIMS The aims of this study were to investigate and characterize the anthropometric, nutritional, genetic, psychological and sleep variables of slalom kayakers, and to verify the correlation of these variables with the slalom kayakers' performance. METHODS Ten elite Brazilian team slalom kayakers participated of this study. Nutritional analysis was made by the Food Record (three days), 24 Hour Dietary Recall and Food Frequency Questionnaire. The ACE I/D, AGTMet235Thr, ACTN3R577X and BDKRB2+9/-9 were genotyped for genetic profile. The Profile of Mood States (POMS) and Sports Competition Anxiety Test (SCAT) were applied to investigate the psychological variables. The Pittsburgh Sleep Quality Index (PSQI), Epworth Sleep Scale (ESS) and Morningness-eveningness questionnaire (MEQ) were used for sleep traits analysis. Performance trials were performed on a white-water course with 24 gates, and finish time was considered as the variable related to performance. RESULTS Significant correlations were obtained between Performance Time Trial and %Fat (r=0.77), Energy (r=-0.75), Protein (r=-0.76), Carbohydrate (r=-0.72), Vitamin B6 (r=-0.87), Vitamin A (r=-0.82), Thiamine (r=-0.77), Riboflavin (r=-0.71), Magnesium (r=-0.86) and Phosphorus (r=-0.74) intake, besides the Fatigue mood domain (r=0.73) and the SCAT score (r=0.67). Athletes genotyped with the I, T, R and +9 alelle also presented better performances. CONCLUSIONSIn summary, the novel results provided by this study reinforce the necessity of considering several aspects during athlete development in order to achieve better performance in competitions.


Subject(s)
Humans , Athletic Performance , Athletes/psychology , Water Sports , Sleep , Test Anxiety Scale , Nutrition Assessment , Anthropometry/instrumentation
7.
Transplantation ; 101(12): 2905-2912, 2017 12.
Article in English | MEDLINE | ID: mdl-28658201

ABSTRACT

BACKGROUND: The aims of this study were to identify the genetic mutations profile in Brazilian children with nephrotic syndrome (NS) and to determine a genotype-phenotype correlation in this disease. METHODS: Next-generation sequencing and mutation analysis were performed on 24 genes related to NS in a cross-sectional study involving 95 children who underwent kidney transplantation due to NS, excluding congenital cases. RESULTS: A total of 149 variants were identified in 22 of 24 sequenced genes. The mutations were classified as pathogenic, likely pathogenic, likely benign and benign per the chance of causing the disease. NPHS2 was the most common mutated gene. We identified 8 (8.4%) patients with hereditary NS and 5 (5%) patients with probably genetically caused NS. COL4A3-5 variants were found as well, but it is not clear whether they should be considered isolated FSGS or simply a misdiagnosed type of the Alport spectrum. Considering the clinical results, hereditary NS patients presented a tendency to early disease onset when compared with the other groups (P = 0.06) and time to end stage renal disease (ESRD) was longer in this group (P = 0.03). No patients from hereditary NS group had NS recurrence after transplantation. CONCLUSIONS: This is the first study in children with steroid-resistant NS who underwent kidney transplantation using next-generation sequencing. Considering our results, we believe this study has shed some light to the uncertainties of genotype-phenotype correlation in NS, where several genes cooperate to produce or even to modify the course of the disease.


Subject(s)
Kidney Transplantation , Nephrotic Syndrome/genetics , Nephrotic Syndrome/surgery , Adolescent , Brazil , Child , Child, Preschool , Computational Biology , Cross-Sectional Studies , DNA Mutational Analysis , Female , Genetic Association Studies , Genotype , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Mutation
8.
Biol Chem ; 397(4): 315-22, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26751894

ABSTRACT

Hereditary angioedema (HAE) is accompanied by an overproduction of bradykinin (BK) as the primary mediator of swelling. Although many proteins may be involved in regulating the wide spectrum of HAE symptoms, most studies have only focused on C1-INH and FXII. For the first time, a next generation sequencing (NGS) method was applied to develop a robust, time- and cost-effective diagnostic and research tool to analyze selected genes related to HAE. The entire coding region and the exon-intron boundaries of 15 genes from 23 subjects of a Brazilian family, nine of whom were symptomatic, were analyzed by NGS. One new mutation found uniquely in the nine symptomatic patients, p.Ala457Pro in the SERPING1 gene, was estimated as likely to be pathogenic (PolyPhen-2 software analysis) and is the main candidate to be responsible for HAE in these patients. Alterations identified in a few asymptomatic individuals but also found in almost all symptomatic patients, such as p.Ile197Met (HMWK), p.Glu298Asp (NOS3) and p.Gly354Glu (B2R), may also be involved in modulating patient-specific symptoms. This NGS gene panel has proven to be a valuable tool for a quick and accurate molecular diagnosis of HAE and efficient to indicate modulators of HAE symptoms.


Subject(s)
Angioedemas, Hereditary/genetics , Genetic Testing , High-Throughput Nucleotide Sequencing , Adult , Angioedemas, Hereditary/blood , Angioedemas, Hereditary/diagnosis , Brazil , Child , Female , Humans , Male , Middle Aged , Young Adult
9.
Genet Test Mol Biomarkers ; 19(5): 253-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25831089

ABSTRACT

The alpha-actinin-3 r577x polymorphism (rs1815739) is one of the most important polymorphisms associated with athletic performance. This single-nucleotide mutation leads to a premature stop codon, resulting in a nonfunctional protein product. The presence of the dominant R allele is associated with full power skeletal muscle contraction. Homozygosity for the X allele is correlated with more efficient energy disposure. Restriction fragment length polymorphism and real-time polymerase chain reaction (PCR) are the standard methods used to genotype this polymorphism, but they are expensive and require special equipments. Here, we present a simple and cost-efficient method to genotype the ACTN3 r577x polymorphism by a single PCR. External primers yield a 690-bp product that indicates the template quality. Internal primers produce a 413-bp product if the R allele is present and a 318-bp product if the X allele is present. Our four-primer genotyping PCR was validated by the standard real-time PCR, generally used to genotype this single-nucleotide polymorphism, demonstrating the accuracy of this method. This protocol is perfect for small- or large-scale cohort genotyping of the ACTN3 r577x polymorphism.


Subject(s)
Actinin/genetics , Genotyping Techniques/methods , Actins/genetics , Athletic Performance/physiology , Base Sequence , DNA Primers , Humans , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide
10.
PLoS One ; 7(9): e44782, 2012.
Article in English | MEDLINE | ID: mdl-23024762

ABSTRACT

BACKGROUND: Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B(1) receptor knockout mice (B(1) (-/-)) are leaner and exhibit improved insulin sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that kinin B(1) receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B(1) receptors. In these cells, treatment with the B(1) receptor agonist des-Arg(9)-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B(1) (-/-) mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B(1) receptor was limited to cells of the adipose tissue (aP2-B(1)/B(1) (-/-)). Similarly to B(1) (-/-) mice, aP2-B(1)/B(1) (-/-) mice were leaner than wild type controls. However, exclusive expression of the kinin B(1) receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B(1) (-/-) mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B(1) receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B(1)/B(1) (-/-) when compared to B(1) (-/-) mice. When subjected to high fat diet, aP2-B(1)/B(1) (-/-) mice gained more weight than B(1) (-/-) littermates, becoming as obese as the wild types. CONCLUSIONS/SIGNIFICANCE: Thus, kinin B(1) receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity.


Subject(s)
Adipocytes/metabolism , Glucose/metabolism , Kinins/metabolism , Obesity/metabolism , Receptor, Bradykinin B1/metabolism , Animals , Gene Expression Regulation , Genetic Predisposition to Disease , Glucose Transporter Type 4/metabolism , Insulin/metabolism , Insulin Resistance/genetics , Male , Mice , Mice, Knockout , Obesity/genetics , Receptor, Bradykinin B1/genetics
11.
J Mol Med (Berl) ; 89(1): 65-74, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20941593

ABSTRACT

Fabry disease is a multisystem X-linked disorder resulting from α-galactosidase A (α-GalA) gene mutations leading to the accumulation of globotriaosylceramide mainly in endothelium compromising heart, kidney, and brain. In Fabry patients, progressive renal failure is frequently treated with angiotensin I-converting enzyme (ACE) inhibitors. We were interested in the possible interactions between ACE inhibitors therapy and the only causative therapy for Fabry disease, the enzyme replacement therapy (ERT) using recombinant human α-GalA (rhα-GalA). Our results suggest that ACE activity was significantly inhibited in plasma of Fabry patients and the blood pressure level decreased just after ERT (at the end of the rhα-GalA infusion). Interestingly, 2 weeks later, ACE activity was significantly upregulated and the plasma levels of angiotensin II increased in the patients treated with rhα-GalA following the elevations of ACE activity. The same inhibitory effect on ACE activity was also observed in rats after rhα-GalA infusion. Furthermore, ACE activity in CHO cells transfected with the human ACE was inhibited dose and time-dependently by rhα-GalA. In vitro, the incubation of plasma from healthy volunteers with rhα-GalA significantly reduced ACE activity. Finally, rhα-GalA also inhibited ACE activity and released galactose residues from purified rabbit lung ACE dose-dependently. In summary, our results suggest that rhα-GalA interacts with ACE and inhibits its activity, possibly by removing the galactose residues from the enzyme. This modulation might have profound impact on the clinical outcome of Fabry patients treated with rhα-GalA.


Subject(s)
Blood Pressure/drug effects , Fabry Disease/enzymology , Gene Expression Regulation, Enzymologic/drug effects , Peptidyl-Dipeptidase A/metabolism , alpha-Galactosidase/pharmacology , Adolescent , Adult , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensins/blood , Animals , CHO Cells , Cricetinae , Cricetulus , Fabry Disease/drug therapy , Female , Humans , Male , Middle Aged , Models, Animal , Peptidyl-Dipeptidase A/blood , Rabbits , Rats , Rats, Wistar , Recombinant Proteins/pharmacology , Young Adult , alpha-Galactosidase/therapeutic use
12.
Biochem Pharmacol ; 78(8): 951-8, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19549507

ABSTRACT

Renin-angiotensin system is involved in homeostasis processes linked to renal and cardiovascular system and recently has been linked to metabolic syndrome. We analyzed the influence of long term angiotensin I converting enzyme (ACE) inhibitor enalapril treatment in normotensive adult Wistar rats fed with standard or palatable hyperlipidic diets. Our results show that long term enalapril treatment decreases absolute food intake, serum leptin concentration and body weight gain. Moreover, in adipose tissue, enalapril treatment led to decreased ACE activity, enhanced the expression of peroxisome proliferator activated receptor gamma, adiponectin, hormone-sensitive lipase, fatty acid synthase, catalase and superoxide dismutase resulting in prolonged life span. On the other hand, the ACE inhibitor was not able to improve the transport of leptin through the blood brain barrier or to alter the sensitivity of this hormone in the central nervous system. The effect of enalapril in decreasing body weight gain was also observed in older rats. In summary, these results extend our previous findings and corroborate data from the literature regarding the beneficial metabolic effects of enalapril and show for the first time that this ACE inhibitor prolongs life span in rats also fed with palatable hyperlipidic diet, an action probably correlated with adipose tissue metabolic modulation and body weight reduction.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Enalapril/pharmacology , Longevity/drug effects , Weight Gain/drug effects , Adiponectin/metabolism , Adipose Tissue/metabolism , Animals , Blood Pressure/drug effects , Catalase/metabolism , Eating/drug effects , Energy Intake/drug effects , Fatty Acid Synthases/metabolism , Insulin/blood , Leptin/blood , Male , PPAR gamma/metabolism , Random Allocation , Rats , Rats, Wistar , Sterol Esterase/metabolism , Superoxide Dismutase/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...