Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 98: 104046, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36587778

ABSTRACT

Studies indicate that the pesticide malathion may have a role in diabetes. Herein, we determined the effects of different concentrations of malathion on survival, ultrastructure, and electrophysiologic islet cell parameters. Acutely, high concentrations of malathion (0.5 or 1 mM) increased cell death in rat islet cells, while low concentrations (0.1 mM) caused signs of cell damage in pancreatic α and ß cells. Exposure of RINm5F cells to malathion for 24 or 48 h confirmed the reduction in ß-cell viability at lower concentrations (0.001-100 µM). Chronic exposure of mouse pancreatic α and ß cells to 3 nM of malathion led to increased voltage-gated K+ (Kv) currents in α-cells. Our findings show a time and concentration dependency for the malathion effect on the reduction of islet cell viability and indicate that pancreatic α cells are more sensitive to malathion effects on Kv currents and cell death.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Mice , Rats , Animals , Malathion , Cell Survival , Organophosphates/pharmacology
2.
Arch Virol ; 159(4): 727-37, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24142270

ABSTRACT

Molecular variability was assessed for 18 isolates of cowpea mild mottle virus (CPMMV, genus Carlavirus, family Betaflexiviridae) found infecting soybean in various Brazilian states (Bahia, Goiás, Maranhão, Mato Grosso, Minas Gerais, Pará) in 2001 and 2010. A variety of symptoms was expressed in soybean cv. CD206, ranging from mild (crinkle/blistering leaves, mosaic and vein clearing) to severe (bud blight, dwarfing, leaf and stem necrosis). Recombination analysis revealed only one CPMMV isolate to be recombinant. Pairwise comparisons and phylogenetic analysis were performed for partial genomes (ORF 2 to the 3' terminus) and for each ORF individually (ORFs 2 to 6), showing the isolates to be distinct. The topology of the phylogenetic tree could be related to symptoms, but not to the year of collection or geographical origin. Additionally, the phylogenetic analysis supported the existence of two distinct strains of the virus, designated CPMMV-BR1 and CPMMV-BR2, with molecular variations between them.


Subject(s)
Carlavirus/genetics , Carlavirus/isolation & purification , Genetic Variation , Glycine max/virology , Plant Diseases/virology , Brazil , Carlavirus/classification , Cluster Analysis , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
3.
Plant Dis ; 98(11): 1577, 2014 Nov.
Article in English | MEDLINE | ID: mdl-30699823

ABSTRACT

At present, the principal bacterial disease of citrus in Brazil is Huanglongbing, caused by the alpha-proteobacterium 'Candidatus Liberibacter spp.' (although a phytoplasma of the 16SrIX group is also associated with this disease [4]). While there is a wide diversity of phytoplasmas in crop species in Brazil (3), there have been no reports of symptoms associated with phytoplasma in Brazilian citrus. Asymptomatic infections of citrus cannot be excluded as a possibility and such plants could serve as a reservoir of phytoplasma inoculum. The aim of this study was to assess the presence of phytoplasma in asymptomatic Citrus aurantifolia (acid lime) in Brazil. Thirty-three leaf samples (young leaves from the upper canopies) were randomly collected from different plants in the states of Minas Gerais (n = 23), Santa Catarina (n = 2), and São Paulo (n = 8). Two additional samples of C. limonia ('Rangpur' lime) and one of C. latifolia ('Persian' or 'Tahiti' lime) were collected in Minas Gerais. Total DNA extraction was performed using NucleoSpin Plant II Kit (Macherey-Nagel) according to the manufacturer's recommendations. PCR was carried out with a universal P1/P7 primer set followed by nested primers R16F2n/R16R2 (2). Additionally, direct PCR was performed using primers specific for phytoplasma immune-dominant membrane protein IMP3F/IMP3R (1). 'Rangpur' and 'Tahiti' lime were not infected with phytoplasma. Of the C. aurantifolia samples, 52% were positive for phytoplasma in the direct and nested PCR assays. The numbers of positive samples in Minas Gerais, Santa Catarina, and São Paulo states were 12, 1, and 4, respectively. Of these, five were selected for DNA purification and 1,246-bp fragments were ligated to the pGEM T-easy vector (Promega) and partial 16Sr DNA was sequenced. Nucleotide sequences of Brazilian phytoplasma strains BR:MG:FNS10:2011, BR:MG:FNS53:2011, BR:SP:FNS73:2011, BR:SC:FNS86:2011, and BR:MG:FNS126:2012 (GenBank Accession Nos. KJ158173, KJ158174, KJ158175, KJ158176, and KJ158177, respectively) were subjected to RFLP analyses. The 16S rDNA RFLP in silico patterns for the five strains were identical to each other and to Cactus witches'-broom phytoplasma (16SrII-C subgroup, AJ293216). In addition, the highest similarity coefficient (5) and nucleotide sequence identity of Brazilian phytoplasma strains were 0.99 and 99%, respectively, with Cactus witches'-broom phytoplasma. PCR-RFLP analyses using the enzymes Bstu I, EcoR I, and Hpa II were consistent with RFLP in silico results, showing the same pattern as the 16SrII-C subgroup. Phylogenetic analyses based on 16S rDNA sequences (1,246 bp) demonstrated that all the Brazilian strains grouped in the same clade with other representative sequences from the 16S rDNAII group. To confirm the absence of any macroscopic symptoms, morphological characteristics of 10 uninfected and 10 phytoplasma-infected plants randomly selected from a single field in Minas Gerais were analyzed. There were no significant differences in leaf area, stalk diameter, or numbers of leaves, flowers, or fruits per branch. To our knowledge, this is the first report of the 16SrII-C subgroup phytoplasma associated with C. aurantifolia in Brazil, and the first report of asymptomatic citrus plants infected with phytoplasma. References: (1) N. Askari et al. J. Microbiol. Biotechnol. 21:81, 2011. (2) I. M. Lee et al. Phytopathology 84:559, 1994. (3) H. G. Montano et al. Bull. Insectol. 60:129, 2007. (4) D. C. Teixeira et al. Phytopathology 98:977, 2008. (5) Y. Zhao et al. Meth. Mol. Biol. 938:329, 2013.

SELECTION OF CITATIONS
SEARCH DETAIL
...