Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 361: 142481, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823428

ABSTRACT

The study presents the successful development of a new electrochemical sensor with low cost and disposability for application in nitrofurazone detection in environmental and pharmaceutical samples. The sensors were fabricated using materials obtained from local storage and conductive carbon ink. The modification of the screen-printed electrodes with the hybrid nanomaterial based on silver nanoparticles, carbon quantum dots, and carbon nanotubes showed synergistic contributions in the nitrofurazone electrooxidation, as observed in the wide linear range (0.008 at 15.051 µM), with a sensitivity of 0.650 µA/µM. The limit of detection obtained was 4.6 nM. Differential pulse voltammetry, cyclic voltammetry, X-ray photoelectron spectroscopy, X-ray diffraction analysis, and high-resolution transmission electron microscopy were used to evaluate the electrochemical and structural characteristics. Studies of possible interferences were considered with nitrofurazone in the presence of the ions and organic molecules. The results were satisfactory, with a variation of 93.3% ± 4.39% at 100% ± 2.40%. The low volume used in the analyses (50 µL), disposability, high sensibility, selectivity, and low limit of detection are advantages that make the proposed sensor an electrochemical tool of high viability for the NFZ detection in environmental matrices and pharmaceutical formulations.


Subject(s)
Anti-Bacterial Agents , Electrochemical Techniques , Metal Nanoparticles , Nanotubes, Carbon , Nitrofurazone , Nitrofurazone/analysis , Nitrofurazone/chemistry , Electrochemical Techniques/methods , Nanotubes, Carbon/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/analysis , Limit of Detection , Silver/chemistry , Electrodes , Quantum Dots/chemistry
2.
Anal Methods ; 15(31): 3874-3884, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37498592

ABSTRACT

This study presents the development of an electrochemical sensor, denoted as GCE/CB/SiAlSn, based on the modification of a glassy carbon electrode surface with the ternary oxide SiO2/Al2O3/SnO2 associated with carbon black, for direct determination of the neonicotinoid pesticide clothianidin in different matrices, such as environmental and food samples. Morphological characterization by the scanning electron microscopy technique, electroanalytical analyses using the cyclic voltammetry technique and differential pulse voltammetry are presented which demonstrated that the developed electrochemical platform presents high sensitivity in the electroanalytical clothianidin determination. The linear range studied was from 2.99 × 10-7 to 6.04 × 10-5 mol L-1, with an LOD of 2.47 nmol L-1. This high sensitivity was explained using the synergistic relationship between carbon black and ternary oxide that maximized the electroactive surface area of the GCE/CB/SiAlSn sensor. Interferent studies were performed that showed high selectivity of the sensor to the pesticide in the presence of Ca2+, K+, Na+, and Mg2+ and carbendazim, glyphosate, imidacloprid and thiamethoxam pesticides. The sensor was applied to real samples of tap water and apple juice obtaining recoveries from 91.0% to 103.0%.


Subject(s)
Graphite , Oxides , Oxides/chemistry , Graphite/chemistry , Soot , Silicon Dioxide , Neonicotinoids
SELECTION OF CITATIONS
SEARCH DETAIL
...