Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Cell Rep ; 39(8): 1061-1078, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32388590

ABSTRACT

KEY MESSAGE: Cowpea miRNAs and Argonaute genes showed differential expression patterns in response to CPSMV challenge Several biotic stresses affect cowpea production and yield. CPSMV stands out for causing severe negative impacts on cowpea. Plants have two main induced immune systems. In the basal system (PTI, PAMP-triggered immunity), plants recognize and respond to conserved molecular patterns associated with pathogens (PAMPs). The second type (ETI, Effector-triggered immunity) is induced after plant recognition of specific factors from pathogens. RNA silencing is another important defense mechanism in plants. Our research group has been using biochemical and proteomic approaches to learn which proteins and pathways are involved and could explain why some cowpea genotypes are resistant whereas others are susceptible to CPSMV. This current study was conducted to determine the role of cowpea miRNA in the interaction between a resistant cowpea genotype (BRS-Marataoã) and CPSMV. Previously identified and deposited plant microRNA sequences were used to find out all possible microRNAs in the cowpea genome. This search detected 617 mature microRNAs, which were distributed in 89 microRNA families. Next, 4 out of these 617 miRNAs and their possible target genes that encode the proteins Kat-p80, DEAD-Box, GST, and SPB9, all involved in the defense response of cowpea to CPSMV, had their expression compared between cowpea leaves uninoculated and inoculated with CPSMV. Additionally, the differential expression of genes that encode the Argonaute (AGO) proteins 1, 2, 4, 6, and 10 is reported. In summary, the studied miRNAs and AGO 2 and AGO4 associated genes showed differential expression patterns in response to CPSMV challenge, which indicate their role in cowpea defense.


Subject(s)
Comovirus/physiology , Gene Expression Regulation, Plant , MicroRNAs/genetics , Vigna/genetics , Vigna/virology , Base Sequence , Genome, Plant , MicroRNAs/metabolism , Nucleic Acid Conformation , Plant Diseases/genetics , Plant Diseases/virology , Plant Proteins/genetics , Plant Proteins/metabolism , RNA Stability/genetics , Reference Standards
2.
Planta ; 249(5): 1503-1519, 2019 May.
Article in English | MEDLINE | ID: mdl-30706136

ABSTRACT

MAIN CONCLUSION: Chitin-binding proteins behave as storage and antifungal proteins in the seeds of Moringa oleifera. Moringa oleifera is a tropical multipurpose tree. Its seed constituents possess coagulant, bactericidal, fungicidal, and insecticidal properties. Some of these properties are attributed to a group of polypeptides denominated M. oleifera chitin-binding proteins (in short, Mo-CBPs). Within this group, Mo-CBP2, Mo-CBP3, and Mo-CBP4 were previously purified to homogeneity. They showed high amino acid similarity with the 2S albumin storage proteins. These proteins also presented antimicrobial activity against human pathogenic yeast and phytopathogenic fungi. In the present study, the localization and expression of genes that encode Mo-CBPs and the biosynthesis and degradation of the corresponding proteins during morphogenesis and maturation of M. oleifera seeds at 15, 30, 60, and 90 days after anthesis (DAA) and germination, respectively, were assessed. The Mo-CBP transcripts and corresponding proteins were not detected at 15 and 30 days after anthesis (DAA). However, they accumulated at the latter stages of seed maturation (60 and 90 DAA), reaching the maximum level at 60 DAA. The degradation kinetics of Mo-CBPs during seed germination by in situ immunolocalization revealed a reduction in the protein content 48 h after sowing (HAS). Moreover, Mo-CBPs isolated from seeds at 60 and 90 DAA prevented the spore germination of Fusarium spp. Taken together, these results suggest that Mo-CBPs play a dual role as storage and defense proteins in the seeds of M. oleifera.


Subject(s)
Carrier Proteins/metabolism , Carrier Proteins/pharmacology , Chitin/metabolism , Moringa oleifera/metabolism , Moringa oleifera/physiology , Seeds/metabolism , Seeds/physiology , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Fusarium/drug effects , Germination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL