Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(12): 1414, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37925384

ABSTRACT

Microplastics have long been present in marine and terrestrial environments and have emerged in recent decades as a global environmental concern. This pollutant has been detected with increasing frequency in Brazilian territory and herein primarily highlights current information and developments about the quantity, distribution, techniques of identification, origins, and sources of microplastics and related pollutants in the Brazilian environment. We evaluated 79 publications from 2018 to December 2022, and some aspects can be highlighted: 27% of studies were published in the Journal Marine Pollution Bulletin; 22% of all studies were conducted in São Paulo city; and 52% of all microplastics found were collected from biota followed by sediment samples. According to the findings given here, microplastics in Brazilian habitats, which can reach concentrations of 4367 to 25,794 items m-2 in sediments, are becoming a serious problem in the Anthropocene age, and some topics regarding the open questions in this area were pointed out in this review.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Microplastics , Plastics , Brazil , Water Pollutants, Chemical/analysis , Environmental Monitoring , Ecosystem , Geologic Sediments
2.
ACS Omega ; 7(11): 9388-9396, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35356695

ABSTRACT

Molybdenum disulfide (MoS2) is attractive for use in next-generation nanoelectronic devices and exhibits great potential for humidity sensing applications. Herein, MoS2 ink was successfully prepared via a simple exfoliation method by sonication. The structural and surface morphology of a deposited ink film was analyzed by scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). The aerosol-printed MoS2 ink sensor has high sensitivity, with a conductivity increase by 6 orders of magnitude upon relative humidity increase from 10 to 95% at room temperature. The sensor also has fast response/recovery times and excellent repeatability. Possible mechanisms for the water-induced conductivity increase are discussed. An analytical model that encompasses two ionic conduction regimes, with a percolation transition to an insulating state below a low humidity threshold, describes the sensor response successfully. In conclusion, our work provides a low-cost and straightforward strategy for fabricating a high-performance humidity sensor and fundamental insights into the sensing mechanism.

3.
Nanotechnology ; 33(3)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34433140

ABSTRACT

Nowadays, hexagonal boron nitride nanosheets (h-BNNS) have shown promising results among 2D nanomaterials. A great effort has been made in recent years to obtain h-BNNS with a high-yield process to enable its large-scale application in industrial plants. In this work, we developed a mechanochemical method for obtaining h-BN nanosheets assisted by NaOH aqueous solution as process aid and aimed the ideal balance between yield, quality and process sustainability. Images obtained by transmission electron microscope suggested a great exfoliation of the h-BNNS in the range of 12-38 layers observed for well dispersed nanosheets. The macroscopic stability study, the polydispersity index, hydrodynamic diameter, and Zeta potential measurements suggested that material prepared in autoclave and ball milling followed by tip sonication process at 40 °C (h-BNNS-T40) could be considered the most promising material. The process used in this case reached a yield of about 37% of nanosheets with an optimal balance between quality and practicality. A hybrid lamellar material was also prepared by drop-casting and dip-coating techniques. An increase on thermal stability in oxidizing atmosphere was observed with respect to the pure graphene oxide (GO). Fourier transformation infrared spectroscopy and RAMAN suggested the presence of chemical interactions between h-BNNS and GO in the hybrid. This fact supports the interest of extending the study of this hybrid (which has an easy preparation method) to further explore its applicability.

4.
ACS Appl Mater Interfaces ; 11(27): 24485-24492, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-28920429

ABSTRACT

Two-dimensional (2D) nanomaterials as molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), and their hybrid (MoS2/h-BN) were employed as fillers to improve the physical properties of epoxy composites. Nanocomposites were produced in different concentrations and studied in their microstructure, mechanical and thermal properties. The hybrid 2D mixture imparted efficient reinforcement to the epoxy leading to increases of up to 95% in tensile strength, 60% in ultimate strain, and 58% in Young's modulus. Moreover, an enhancement of 203% in thermal conductivity was achieved for the hybrid composite as compared to the pure polymer. The incorporation of MoS2/h-BN mixture nanofillers in epoxy resulted in nanocomposites with multifunctional characteristics for applications that require high mechanical and thermal performance.

5.
Sci Rep ; 3: 2572, 2013.
Article in English | MEDLINE | ID: mdl-23999206

ABSTRACT

The operating temperatures of current electrochemical energy storage devices are limited due to electrolyte degradation and separator instability at higher temperatures. Here we demonstrate that a tailored mixture of materials can facilitate operation of supercapacitors at record temperatures, as high as 200°C. Composite electrolyte/separator structures made from naturally occurring clay and room temperature ionic liquids, with graphitic carbon electrodes, show stable supercapacitor performance at 200°C with good cyclic stability. Free standing films of such high temperature composite electrolyte systems can become versatile functional membranes in several high temperature energy conversion and storage applications.

6.
J Phys Chem B ; 117(21): 6524-33, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23607578

ABSTRACT

In this work a self-assembly technique is presented, allowing the fast formation of carbon black thin films. It consists in the controlled addition of a stable carbon material's dispersion over the water surface, disturbed by a vortex. The vortex, although not essential for the film formation, was found to drastically improve film homogeneity. A physical chemical study concerning how several parameters could be used to tune film properties was also conducted. The self-assembled films, which can be picked up in any hydrophilic substrate, showed a good electrical conductivity and a high optical transparency. As an application example, films about 200 nm thick were employed as supercapacitor electrodes.

7.
ACS Nano ; 5(4): 2715-22, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21410237

ABSTRACT

Most materials respond either elastically or inelastically to applied stress, while repeated loading can result in mechanical fatigue. Conversely, bones and other biomechanical tissues have the ability to strengthen when subjected to recurring elastic stress. The cyclic compressive loading of vertically aligned carbon nanotube/poly(dimethylsiloxane) nanocomposites has revealed a self-stiffening response previously unseen in synthetic materials. This behavior results in a permanent increase in stiffness that continues until the dynamic stress is removed and resumes when it is reapplied. The effect is also specific to dynamic loads, similar to the localized self-strengthening that occurs in biological structures. These observations help to elucidate the complex interactions between matrix materials and nanostructures, and control over this mechanism could lead to the development of adaptable structural materials and active, load-bearing artificial connective tissues.

8.
J Nanosci Nanotechnol ; 7(10): 3477-86, 2007 Oct.
Article in English | MEDLINE | ID: mdl-18330161

ABSTRACT

Raw and purified samples of carbon nanotubes are considered as multicomponent systems with a distribution of carbonaceous, amorphous, multishell graphitic particles and nanotubes, together with the particles of metal compounds from the catalyst. With respect to the carbon nanotube fractions, a distribution of size, defect concentrations, and functionalities needs to be taken into account. In order to address the problem of quantitative evaluation of purity it is necessary to measure the quality and distribution of the carbon nanotubes. In this research conventional and high resolution thermogravimetry are applied to quantify different fractions of carbonaceous and metallic materials in raw and moderately purified single walled and multiwalled carbon nanotubes. For each oxidized fraction, defined by careful line shape analysis of the derivative thermogravimetric curves (DTG), the temperature of maximum rate of oxidation, the temperature range for this oxidation, related to the degree of homogeneity, and the amount of associated material is specified. The attribution of carbonaceous materials to each fraction in the distribution was based on SEM and TEM measurements and the literature. The MWNT purified sample with 1.6 wt% metal oxide was investigated by high resolution thermogravimetry (HRTG). The quantitative assessment for the carbonaceous fractions was 25 wt% of amorphous and high defect carbonaceous materials including nanotubes, 54 wt% MWNT and 20 wt% multishell graphitic particles. A qualitative evaluation of these fractions was obtained from the SEM and TEM images and supports these results. The accuracy of the values, taking into account other measurements performed on the same batch of material, should be more sensible than +/-4 wt%.


Subject(s)
Crystallization/methods , Materials Testing/methods , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Thermogravimetry/methods , Macromolecular Substances/chemistry , Molecular Conformation , Nanotechnology/methods , Particle Size , Surface Properties
9.
J Phys Condens Matter ; 18(32): 7529-42, 2006 Aug 16.
Article in English | MEDLINE | ID: mdl-21690866

ABSTRACT

A correlation between thermal, optical and morphological properties of self-sustained films formed from blends of poly(3-hexylthiophene) (P3HT) and thermoplastic polyurethane (TPU), with 1, 10 and 20 wt% of P3HT in TPU, is established. Images of scanning electron microscopy (SEM) show the formation of domains of P3HT into the TPU matrix, characterizing the blend material as heterogeneous. The heat capacity (C(p)) dependence on P3HT contents was investigated in a large temperature interval. In the region of the TPU glass transition, the difference between the experimental and predicted ΔC(p) values is more pronounced for the 1 wt% case, which strongly suggests that in this case there is a higher influence of the P3HT chains on the TPU matrix. The SEM images for the 1 wt% blended film present the formation of the smallest P3HT domains in the TPU matrix. The relatively high reduction of the PL intensity of the pure electronic transition peak in the 1 wt% blended film, in comparison to the other blended films and also to a pure P3HT film, favours the assumption that the smallest P3HT domains are at the origin of a more structural disordered character. This fact is in agreement with the results obtained by Raman spectroscopy and also by photoluminescence resolved by polarization in stretched self-sustained films, showing an ample correlation between morphological, thermal and optical properties of these blended materials. In addition, the thermoplastic properties of the polyurethane configure very good conditions for tensile drawing of P3HT and other conjugated polymer molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...