Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bio Protoc ; 12(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36199700

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening, high mortality pulmonary condition characterized by acute lung injury (ALI) resulting in diffuse alveolar damage. Despite progress regarding the understanding of ARDS pathophysiology, there are presently no effective pharmacotherapies. Due to the complexity and multiorgan involvement typically associated with ARDS, animal models remain the most commonly used research tool for investigating potential new therapies. Experimental models of ALI/ARDS use different methods of injury to acutely induce lung damage in both small and large animals. These models have historically played an important role in the development of new clinical interventions, such as fluid therapy and the use of supportive mechanical ventilation (MV). However, failures in recent clinical trials have highlighted the potential inadequacy of small animal models due to major anatomical and physiological differences, as well as technical challenges associated with the use of clinical co-interventions [e.g., MV and extracorporeal membrane oxygenation (ECMO)]. Thus, there is a need for larger animal models of ALI/ARDS, to allow the incorporation of clinically relevant measurements and co-interventions, hopefully leading to improved rates of clinical translation. However, one of the main challenges in using large animal models of preclinical research is that fewer species-specific experimental tools and metrics are available for evaluating the extent of lung injury, as compared to rodent models. One of the most relevant indicators of ALI in all animal models is evidence of histological tissue damage, and while histological scoring systems exist for small animal models, these cannot frequently be readily applied to large animal models. Histological injury in these models differs due to the type and severity of the injury being modeled. Additionally, the incorporation of other clinical support devices such as MV and ECMO in large animal models can lead to further lung damage and appearance of features absent in the small animal models. Therefore, semi-quantitative histological scoring systems designed to evaluate tissue-level injury in large animal models of ALI/ARDS are needed. Here we describe a semi-quantitative scoring system to evaluate histological injury using a previously established porcine model of ALI via intratracheal and intravascular lipopolysaccharide (LPS) administration. Additionally, and owing to the higher number of samples generated from large animal models, we worked to implement a more sustainable and greener histopathological workflow throughout the entire process.

2.
Nat Commun ; 13(1): 4173, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882835

ABSTRACT

Despite improvements, lung transplantation remains hampered by both a scarcity of donor organs and by mortality following primary graft dysfunction (PGD). Since acute respiratory distress syndrome (ARDS) limits donor lungs utilization, we investigated cytokine adsorption as a means of treating ARDS donor lungs. We induced mild to moderate ARDS using lipopolysaccharide in 16 donor pigs. Lungs were then treated with or without cytokine adsorption during ex vivo lung perfusion (EVLP) and/or post-transplantation using extracorporeal hemoperfusion. The treatment significantly decreased cytokine levels during EVLP and decreased levels of immune cells post-transplantation. Histology demonstrated fewer signs of lung injury across both treatment periods and the incidence of PGD was significantly reduced among treated animals. Overall, cytokine adsorption was able to restore lung function and reduce PGD in lung transplantation. We suggest this treatment will increase the availability of donor lungs and increase the tolerability of donor lungs in the recipient.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Respiratory Distress Syndrome , Adsorption , Animals , Cytokines , Lung , Lung Transplantation/adverse effects , Organ Preservation , Perfusion , Primary Graft Dysfunction/epidemiology , Primary Graft Dysfunction/prevention & control , Swine , Tissue Donors
3.
Physiol Rep ; 9(13): e14802, 2021 07.
Article in English | MEDLINE | ID: mdl-34250766

ABSTRACT

In severe acute respiratory distress syndrome (ARDS), extracorporeal membrane oxygenation (ECMO) is a life-prolonging treatment, especially among COVID-19 patients. Evaluation of lung injury progression is challenging with current techniques. Diagnostic imaging or invasive diagnostics are risky given the difficulties of intra-hospital transportation, contraindication of biopsies, and the potential for the spread of infections, such as in COVID-19 patients. We have recently shown that particle flow rate (PFR) from exhaled breath could be a noninvasive, early detection method for ARDS during mechanical ventilation. We hypothesized that PFR could also measure the progress of lung injury during ECMO treatment. Lipopolysaccharide (LPS) was thus used to induce ARDS in pigs under mechanical ventilation. Eight were connected to ECMO, whereas seven animals were not. In addition, six animals received sham treatment with saline. Four human patients with ECMO and ARDS were also monitored. In the pigs, as lung injury ensued, the PFR dramatically increased and a particular spike followed the establishment of ECMO in the LPS-treated animals. PFR remained elevated in all animals with no signs of lung recovery. In the human patients, in the two that recovered, PFR decreased. In the two whose lung function deteriorated while on ECMO, there was increased PFR with no sign of recovery in lung function. The present results indicate that real-time monitoring of PFR may be a new, complementary approach in the clinic for measurement of the extent of lung injury and recovery over time in ECMO patients with ARDS.


Subject(s)
COVID-19/physiopathology , Lipopolysaccharides/toxicity , Lung Injury/physiopathology , Lung/physiopathology , Particulate Matter/analysis , Respiratory Distress Syndrome/physiopathology , Animals , Blood Gas Analysis/methods , COVID-19/chemically induced , Extracorporeal Membrane Oxygenation/methods , Lung/drug effects , Lung Injury/chemically induced , Particulate Matter/adverse effects , Respiration, Artificial/methods , Respiratory Distress Syndrome/chemically induced , Swine
4.
Adv Mater ; 33(3): e2005476, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33300242

ABSTRACT

Recent advances in 3D bioprinting allow for generating intricate structures with dimensions relevant for human tissue, but suitable bioinks for producing translationally relevant tissue with complex geometries remain unidentified. Here, a tissue-specific hybrid bioink is described, composed of a natural polymer, alginate, reinforced with extracellular matrix derived from decellularized tissue (rECM). rECM has rheological and gelation properties beneficial for 3D bioprinting while retaining biologically inductive properties supporting tissue maturation ex vivo and in vivo. These bioinks are shear thinning, resist cell sedimentation, improve viability of multiple cell types, and enhance mechanical stability in hydrogels derived from them. 3D printed constructs generated from rECM bioinks suppress the foreign body response, are pro-angiogenic and support recipient-derived de novo blood vessel formation across the entire graft thickness in a murine model of transplant immunosuppression. Their proof-of-principle for generating human tissue is demonstrated by 3D bioprinting human airways composed of regionally specified primary human airway epithelial progenitor and smooth muscle cells. Airway lumens remained patent with viable cells for one month in vitro with evidence of differentiation into mature epithelial cell types found in native human airways. rECM bioinks are a promising new approach for generating functional human tissue using 3D bioprinting.


Subject(s)
Bioprinting , Extracellular Matrix , Ink , Printing, Three-Dimensional , Animals , Humans , Mice , Tissue Scaffolds/chemistry
5.
Am J Physiol Lung Cell Mol Physiol ; 318(3): L510-L517, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31994907

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a common cause of death in the intensive care unit, with mortality rates of ~30-40%. To reduce invasive diagnostics such as bronchoalveolar lavage and time-consuming in-hospital transports for imaging diagnostics, we hypothesized that particle flow rate (PFR) pattern from the airways could be an early detection method and contribute to improving diagnostics and optimizing personalized therapies. Porcine models were ventilated mechanically. Lipopolysaccharide (LPS) was administered endotracheally and in the pulmonary artery to induce ARDS. PFR was measured using a customized particles in exhaled air (PExA 2.0) device. In contrast to control animals undergoing mechanical ventilation and receiving saline administration, animals who received LPS developed ARDS according to clinical guidelines and histologic assessment. Plasma levels of TNF-α and IL-6 increased significantly compared with baseline after 120 and 180 min, respectively. On the other hand, the PFR significantly increased and peaked 60 min after LPS administration, i.e., ~30 min before any ARDS stage was observed with other well-established outcome measurements such as hypoxemia, increased inspiratory pressure, and lower tidal volumes or plasma cytokine levels. The present results imply that PFR could be used to detect early biomarkers or as a clinical indicator for the onset of ARDS.


Subject(s)
Acute Lung Injury/pathology , Disease Models, Animal , Lipopolysaccharides/toxicity , Pulmonary Gas Exchange , Respiratory Distress Syndrome/pathology , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Blood Gas Analysis , Cytokines/metabolism , Hemodynamics , Particle Size , Rheology , Swine , Tidal Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...