Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 117: 7-16, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29800670

ABSTRACT

The hydrolysis of the plant biomass provides many interesting opportunities for the generation of building blocks for the green chemistry industrial applications. An important progress has been made for the hydrolysis of the cellulosic component of the biomass while, for the hemicellulosic components, the advances are less straightforward. Here, we describe the cloning, expression and biochemical and structural characterization of BlAbn1, a GH43 arabinanase from Bacillus licheniformis. This enzyme is selective for linear arabinan and efficiently hydrolyzes this substrate, with a specific activity of 127 U/mg. The enzyme has optimal conditions for activity at pH 8.0 and 45 °C and its activity is only partially dependent of a bound calcium ion since 70% of the maximal activity is preserved even when 1 mM EDTA is added to the reaction medium. BlAbn1 crystal structure revealed a typical GH43 fold and narrow active site, which explains the selectivity for linear substrates. Unexpectedly, the enzyme showed a synergic effect with the commercial cocktail Accellerase 1500 on cellulose hydrolysis. Scanning Electron Microscopy, Solid-State NMR and relaxometry data indicate that the enzyme weakens the interaction between cellulose fibers in filter paper, thus providing an increased access to the cellulases of the cocktail.


Subject(s)
Bacillus licheniformis/enzymology , Cellulose/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Bacillus licheniformis/genetics , Binding Sites , Catalytic Domain , Cellulases , Enzyme Activation , Glycoside Hydrolases/genetics , Hydrogen-Ion Concentration , Hydrolysis , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Protein Binding , Structure-Activity Relationship , Substrate Specificity
2.
Phys Rev Lett ; 117(16): 160402, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27792393

ABSTRACT

The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnetic resonance at room temperature, realizing an effective quantum simulator of two- and four-qubit spin systems. Our study further reveals a novel interplay between coherence and various forms of correlations, and it highlights the natural resilience of quantum effects in complex systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...