Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Infect Dis ; 8(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37624321

ABSTRACT

A remarkable characteristic of infectious diseases classified as Neglected Tropical Diseases (NTDs) is the fact that they are mostly transmitted in tropical and subtropical regions with poor conditions of sanitation and low access to healthcare, which makes transmission areas more likely to overlap. Two of the most important NTDs, schistosomiasis and leishmaniasis, despite being caused by very different etiological agents, have their pathogenesis heavily associated with immune-mediated mechanisms, and Schistosoma spp. and Leishmania spp. have been shown to simultaneously infect humans. Still, the consequences of Schistosoma-Leishmania coinfections remain underexplored. As the inflammatory processes elicited by each one of these parasites can influence the other, several changes have been observed due to this coinfection in naturally infected humans, experimental models, and in vitro cell assays, including modifications in susceptibility to infection, pathogenesis, prognostic, and response to treatment. Herein, we review the current knowledge in Schistosoma-Leishmania coinfections in both human populations and experimental models, with special regard to how schistosomiasis affects tegumentary leishmaniasis, discuss future perspectives, and suggest a few steps to further improve our understanding in this model of parasite-host-parasite interaction.

2.
Parasitol Res ; 122(2): 395-411, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36534238

ABSTRACT

Wild rodent species are naturally infected by Schistosoma mansoni; however, the genetic characterization of the parasite, its parasitological features, and its role in human schistosomiasis are poorly understood. In this study, we isolated and characterized Schistosoma from naturally infected Holochilus sciureus, called HS strain, collected from a schistosomiasis endemic region in Maranhão State, Brazil. To isolate the parasite, miracidia obtained from the livers of H. sciureus were used to infect Biomphalaria glabrata of sympatric (called SB) and allopatric (called BH) strains, and the produced cercariae were subcutaneously inoculated into hamsters and/or BALB/c mice. Parasitological kinetics in experimentally infected hosts were evaluated, and the tRNACys-12S (referred to as 16S herein) and cox 1 regions of mtDNA from isolated worms were amplified and sequenced. Only miracidia obtained from infected mice, but not from hamsters, were capable of infecting B. glabrata, allowing maintenance of the isolated parasite. Cox1 and 16S mtDNA sequences showed 100% similarity with S. mansoni, and phylogenetic analysis showed that the HS strain of S. mansoni forms an assemblage with isolates from America and Kenya, confirming the conspecificity. Experimental infection of B. glabrata SB with S. mansoni HS resulted in two peaks of cercariae shedding at 45 and 70 days post-infection (dpi) and caused higher mortality than in B. glabrata BH. The worm recovery rate in mice was approximately 13%, and the peak of egg elimination occurred at the 10th week post-infection. Therefore, S. mansoni obtained from H. sciureus was successfully isolated, genetically characterized, and maintained in mice, allowing further study of this schistosome strain.


Subject(s)
Biomphalaria , Schistosomiasis mansoni , Trematoda , Animals , Humans , Mice , Schistosoma mansoni/genetics , Schistosomiasis mansoni/parasitology , Arvicolinae , Rodentia/parasitology , Brazil , Phylogeny , Biomphalaria/parasitology , Sigmodontinae , Cercaria
3.
Acta Trop ; 236: 106677, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36063905

ABSTRACT

Schistosomiasis is a neglected parasitic disease caused by digenean trematodes from the genus Schistosoma that affects millions of people worldwide. Despite efforts to control its transmission, this disease remains active within several endemic regions of Africa, Asia, and the Americas. In addition to the deficits in sanitation and educational structure, another major obstacle hindering the eradication of schistosomiasis is the ability of Schistosoma spp. to naturally infect multiple vertebrate hosts, particularly wild rodents. Due to climate change and other anthropogenic disturbances, contact between humans and wild animals has increased, and this has contributed to more frequent interactions between Schistosoma species that typically infect different hosts. This new transmission dynamic involving Schistosoma spp., humans, wild rodents, and livestock could potentially increase the frequency of Schistosoma hybridization and the establishment of new genotypes and strains. Although it is not currently possible to precisely measure how this biological phenomenon affects the epidemiology and morbidity of schistosomiasis, we speculate that these Schistosoma variants may negatively impact control strategies, treatment regimens, and disease burden in humans. In the present study, we discuss the natural infections of wild rodents with Schistosoma spp., the role of these animals as Schistosoma spp. reservoirs, and how they may select hybrids and strains of Schistosoma mansoni. We also discuss measures required to shed light on the actual role of the wild rodents Nectomys squamipes and Holochilus sciureus in the transmission and morbidity of schistosomiasis in Brazil.


Subject(s)
Schistosomiasis mansoni , Schistosomiasis , Animals , Animals, Wild/parasitology , Humans , Rodentia , Schistosoma mansoni/genetics , Schistosomiasis mansoni/epidemiology , Schistosomiasis mansoni/prevention & control , Schistosomiasis mansoni/veterinary
4.
Rev Bras Parasitol Vet ; 31(2): e021921, 2022.
Article in English | MEDLINE | ID: mdl-35352759

ABSTRACT

The present study aimed to evaluate the changes in peripheral blood glucose concentrations induced by Schistosoma mansoni infection in Holochilus sciureus rodents, a wild reservoir of the parasite. Glucose concentration was measured in the plasma of blood samples using a colorimetric enzymatic test. Biological parameters and S. mansoni burden in each rodent were also verified and correlated with glucose concentrations. A total of 76 H. sciureus were captured, out of which 20 (26%) were infected with S. mansoni (n=13 males and n=7 females). Although the parasite burden was comparable between the sexes, blood glucose concentration was lower in infected males and almost unchanged in females. Furthermore, histopathological data revealed that male rodents had a greater hepatic granulomatous inflammatory reaction than females. In addition, we also confirmed that the weight and total length of the analyzed animals had no effect on glucose levels. Therefore, natural infection with S. mansoni in H. sciureus may have a lower impact on glycemic homeostasis in females, which will help us understand the role of these rodents as reservoirs of S. mansoni.


Subject(s)
Rodent Diseases , Schistosomiasis mansoni , Animals , Blood Glucose , Female , Male , Rodentia/parasitology , Schistosoma mansoni , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/veterinary , Sigmodontinae
SELECTION OF CITATIONS
SEARCH DETAIL
...