Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pain Res (Lausanne) ; 4: 1204057, 2023.
Article in English | MEDLINE | ID: mdl-37325677

ABSTRACT

Reactive oxygen species (ROS) are generated in nociceptive pathways in response to inflammation and injury. ROS are accumulated within the sensory ganglia following peripheral inflammation, but the functional role of intraganlionic ROS in inflammatory pain is not clearly understood. The aims of this study were to investigate whether peripheral inflammation leads to prolonged ROS accumulation within the trigeminal ganglia (TG), whether intraganglionic ROS mediate pain hypersensitivity via activation of TRPA1, and whether TRPA1 expression is upregulated in TG during inflammatory conditions by ROS. We demonstrated that peripheral inflammation causes excess ROS production within TG during the period when inflammatory mechanical hyperalgesia is most prominent. Additionally, scavenging intraganglionic ROS attenuated inflammatory mechanical hyperalgesia and a pharmacological blockade of TRPA1 localized within TG also mitigated inflammatory mechanical hyperalgesia. Interestingly, exogenous administration of ROS into TG elicited mechanical hyperalgesia and spontaneous pain-like responses via TRPA1, and intraganglionic ROS induced TRPA1 upregulation in TG. These results collectively suggest that ROS accumulation in TG during peripheral inflammation contributes to pain and hyperalgesia in a TRPA1 dependent manner, and that ROS further exacerbate pathological pain responses by upregulating TRPA1 expression. Therefore, any conditions that exacerbate ROS accumulation within somatic sensory ganglia can aggravate pain responses and treatments reducing ganglionic ROS may help alleviate inflammatory pain.

2.
Lasers Med Sci ; 36(7): 1461-1467, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33155161

ABSTRACT

Nerve injury induces release of peptides and upregulation of receptors such as substance P and transient receptor potential receptor V1 (TRPV1), which contribute to the development and maintenance of chronic pain. Photobiomodulation therapy (PBMT) is a nonpharmacological strategy that promotes tissue repair and reduces pain and inflammation. However, the molecular basis for PBMT effects on neuropathic pain is still unclear. We investigated the effects of PBMT on substance P, TRPV1, and superficial temperature change in a rodent model of neuropathic pain. We evaluated substance P and TRPV1 in dorsal root ganglia (DRG L4 to L6) at baseline, 14 days after chronic constriction injury (CCI) and after PBMT. We also assessed the superficial temperature of tarsal, metatarsal, tibia, and fibula regions before and after PBMT using infrared thermography. Substance P and TRPV1 levels increased in DRG of CCI rats compared to naive and sham rats and decreased after PBMT. Infrared thermography showed increased temperature of tarsal, metatarsal, tibia, and fibula regions in CCI rats, which was decreased after PBMT. There were no statistical differences between CCI rats with PBMT, sham, and naive rats in any assay. PBMT reduces nociceptive mediators and hind paw and leg's temperature in a rodent model of neuropathic pain, suggesting that PBMT may play a modulatory role in thermoregulation, neurogenic inflammation, and thermal sensitivity in peripheral nerve injuries. Therefore, PBMT appears to be a valuable strategy for neuropathic pain treatment in clinical settings.


Subject(s)
Low-Level Light Therapy , Neuralgia , Animals , Ganglia, Spinal , Hyperalgesia , Neuralgia/radiotherapy , Nociception , Rats , Rats, Sprague-Dawley , Thermography
3.
Brain Res ; 1687: 60-65, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29496478

ABSTRACT

Chronic constriction injury (CCI) of the sciatic nerve elicits changes in neuropeptide expression on the dorsal root ganglia (DRG). The neural mobilization (NM) technique is a noninvasive method that has been proven clinically effective in reducing pain. The aim of this study was to analyze the expression of substance P, transient receptor potential vanilloid 1 (TRPV1) and opioid receptors in the DRG of rats with chronic constriction injury and to compare it to animals that received NM treatment. CCI was performed on adult male rats. Each animal was submitted to 10 sessions of neural mobilization every other day, starting 14 days after the CCI injury. At the end of the sessions, the DRG (L4-L6) were analyzed using Western blot assays for substance P, TRPV1 and opioid receptors (µ-opioid receptor, δ-opioid receptor and κ-opioid receptor). We observed a decreased substance P and TRPV1 expression (48% and 35%, respectively) and an important increase of µ-opioid receptor expression (200%) in the DRG after NM treatment compared to control animals. The data provide evidence that NM promotes substantial changes in neuropeptide expression in the DRG; these results may provide new options for treating neuropathic pain.


Subject(s)
Gene Expression Regulation/physiology , Musculoskeletal Manipulations/methods , Neuralgia/rehabilitation , Neuralgia/therapy , Neurons/metabolism , Neuropeptides/metabolism , Animals , Disease Models, Animal , Ganglia, Spinal/pathology , Male , Muscle Strength/physiology , Nerve Tissue Proteins/metabolism , Neuralgia/pathology , Neuropeptides/genetics , Rats , Rats, Wistar , Receptors, Opioid/metabolism , Substance P/metabolism , TRPV Cation Channels/metabolism
4.
Pain Res Manag ; 2017: 7429761, 2017.
Article in English | MEDLINE | ID: mdl-28420943

ABSTRACT

Background. Glial cells are implicated in the development of chronic pain and brain-derived neurotropic factor (BDNF) released from activated microglia contributes to the nociceptive transmission. Neural mobilization (NM) technique is a method clinically effective in reducing pain sensitivity. Here we examined the involvement of glial cells and BDNF expression in the thalamus and midbrain after NM treatment in rats with chronic constriction injury (CCI). CCI was induced and rats were subsequently submitted to 10 sessions of NM, every other day, beginning 14 days after CCI. Thalamus and midbrain were analyzed for glial fibrillary acidic protein (GFAP), microglial cell OX-42, and BDNF using Immunohistochemistry and Western blot assays. Results. Thalamus and midbrain of CCI group showed increases in GFAP, OX-42, and BDNF expression compared with control group and, in contrast, showed decreases in GFAP, OX-42, and BDNF after NM when compared with CCI group. The decreased immunoreactivity for GFAP, OX-42, and BDNF in ventral posterolateral nucleus in thalamus and the periaqueductal gray in midbrain was shown by immunohistochemistry. Conclusions. These findings may improve the knowledge about the involvement of astrocytes, microglia, and BDNF in the chronic pain and show that NM treatment, which alleviates neuropathic pain, affects glial cells and BDNF expression.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Central Nervous System/metabolism , Central Nervous System/pathology , Exercise Therapy/methods , Gene Expression Regulation , Neuralgia/rehabilitation , Neuroglia/pathology , Analysis of Variance , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cell Count , Densitometry , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Male , Neuralgia/pathology , Neuroglia/metabolism , Rats , Rats, Wistar , Tetraspanin 25/metabolism
5.
Mol Pain ; 122016.
Article in English | MEDLINE | ID: mdl-27317579

ABSTRACT

We used functional MRI and a longitudinal design to investigate the brain mechanisms in a previously reported estrogen-dependent visceral hypersensitivity model. We hypothesized that noxious visceral stimulation would be associated with activation of the insula, anterior cingulate cortex, and amygdala, and that estrogen-dependent, stress-induced visceral hypersensitivity would both enhance activation of these regions and recruit activation of other brain areas mediating affect and reward processing. Ovariectomized rats were treated with estrogen (17 ß-estradiol, E2) or vehicle (n = 5 per group) and scanned in a 7T MRI at three different time points: pre-stress (baseline), 2 days post-stress, and 18 days post-stress. Stress was induced via a forced-swim paradigm. In a separate group of ovariectomized rats, E2 treatment induced visceral hypersensitivity at the 2 days post-stress time point, and this hypersensitivity returned to baseline at the 18 days post-stress time point. Vehicle-treated rats show no hypersensitivity following stress. During the MRI scans, rats were exposed to noxious colorectal distention. Across groups and time points, noxious visceral stimulation led to activations in the insula, anterior cingulate, and left amygdala, parabrachial nuclei, and cerebellum. A group-by-time interaction was seen in the right amygdala, ventral striatum-pallidum, cerebellum, hippocampus, mediodorsal thalamus, and pontine nuclei. Closer inspection of the data revealed that vehicle-treated rats showed consistent activations and deactivations across time, whereas estrogen-treated animals showed minimal deactivation with noxious visceral stimulation. This unexpected finding suggests that E2 may dramatically alter visceral nociceptive processing in the brain following an acute stressor. This study is the first to examine estrogen-stress dependent interactions in response to noxious visceral stimulation using functional MRI. Future studies that include other control groups and larger sample sizes are needed to fully understand the interactions between sex hormones, stress, and noxious stimulation on brain activity.


Subject(s)
Estrogens/pharmacology , Hyperalgesia/etiology , Hyperalgesia/pathology , Magnetic Resonance Imaging , Stress, Psychological/complications , Viscera/pathology , Animals , Colon/drug effects , Colon/pathology , Colon/physiopathology , Disease Models, Animal , Female , Hyperalgesia/physiopathology , Motor Activity/drug effects , Rats, Sprague-Dawley , Rectum/drug effects , Rectum/pathology , Rectum/physiopathology , Viscera/physiopathology
6.
Growth Factors ; 33(1): 8-13, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25489629

ABSTRACT

Neurotrophins are crucial in relation to axonal regrowth and remyelination following injury; and neural mobilization (NM) is a noninvasive therapy that clinically is effective in neuropathic pain treatment, but its mechanisms remains unclear. We examined the effects of NM on the regeneration of sciatic nerve after chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted to 10 sessions of NM, starting 14 days after CCI. Then, the nerves were analyzed using transmission electron microscopy and western blot for neural growth factor (NGF) and myelin protein zero (MPZ). We observed an increase of NGF and MPZ after CCI and NM. Electron microscopy revealed that CCI-NM samples had high numbers of axons possessing myelin sheaths of normal thickness and less inter-axonal fibrosis than the CCI. These data suggest that NM is effective in facilitating nerve regeneration and NGF and MPZ are involved in this effect.


Subject(s)
Musculoskeletal Manipulations , Myelin P0 Protein/metabolism , Nerve Growth Factor/metabolism , Nerve Regeneration , Peripheral Nerve Injuries/metabolism , Animals , Axons/metabolism , Axons/ultrastructure , Male , Myelin P0 Protein/genetics , Nerve Growth Factor/genetics , Peripheral Nerve Injuries/therapy , Rats , Rats, Wistar , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Sciatic Nerve/physiology
7.
Behav Brain Funct ; 10: 19, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24884961

ABSTRACT

BACKGROUND: The neural mobilization (NM) technique is a noninvasive method that has been proven to be clinically effective in reducing pain; however, the molecular mechanisms involved remain poorly understood. The aim of this study was to analyze whether NM alters the expression of the mu-opioid receptor (MOR), the delta-opioid receptor (DOR) and the Kappa-opioid receptor (KOR) in the periaqueductal gray (PAG) and improves locomotion and muscle force after chronic constriction injury (CCI) in rats. METHODS: The CCI was imposed on adult male rats followed by 10 sessions of NM every other day, starting 14 days after the CCI injury. At the end of the sessions, the PAG was analyzed using Western blot assays for opioid receptors. Locomotion was analyzed by the Sciatic functional index (SFI), and muscle force was analyzed by the BIOPAC system. RESULTS: An improvement in locomotion was observed in animals treated with NM compared with injured animals. Animals treated with NM showed an increase in maximal tetanic force of the tibialis anterior muscle of 172% (p < 0.001) compared with the CCI group. We also observed a decrease of 53% (p < 0.001) and 23% (p < 0.05) in DOR and KOR levels, respectively, after CCI injury compared to those from naive animals and an increase of 17% (p < 0.05) in KOR expression only after NM treatment compared to naive animals. There were no significant changes in MOR expression in the PAG. CONCLUSION: These data provide evidence that a non-pharmacological NM technique facilitates pain relief by endogenous analgesic modulation.


Subject(s)
Movement/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiopathology , Neuralgia/therapy , Periaqueductal Gray/metabolism , Physical Therapy Modalities , Receptors, Opioid/metabolism , Animals , Male , Muscle, Skeletal/metabolism , Neuralgia/metabolism , Neuralgia/physiopathology , Periaqueductal Gray/physiopathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...