Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2827: 207-222, 2024.
Article in English | MEDLINE | ID: mdl-38985273

ABSTRACT

In this chapter, we report advances in tissue culture applied to Passiflora. We present reproducible protocols for somatic embryogenesis, endosperm-derived triploid production, and genetic transformation for such species knowledge generated by our research team and collaborators in the last 20 years. Our research group has pioneered the work on passion fruit somatic embryogenesis, and we directed efforts to characterize several aspects of this morphogenic pathway. Furthermore, we expanded the possibilities of understanding the molecular mechanism related to developmental phase transitions of Passiflora edulis Sims. and P. cincinnata Mast., and a transformation protocol is presented for the overexpression of microRNA156.


Subject(s)
Passiflora , Plant Somatic Embryogenesis Techniques , Tissue Culture Techniques , Passiflora/genetics , Passiflora/growth & development , Plant Somatic Embryogenesis Techniques/methods , Tissue Culture Techniques/methods , Transformation, Genetic , MicroRNAs/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Endosperm/genetics , Endosperm/growth & development , Gene Expression Regulation, Plant
2.
Methods Mol Biol ; 2827: 223-241, 2024.
Article in English | MEDLINE | ID: mdl-38985274

ABSTRACT

Over the years, our team has dedicated significant efforts to studying a unique natural dye-producing species, annatto (Bixa orellana L.). We have amassed knowledge and established foundations that support the applications of gene expression analysis in comprehending in vitro morphogenic regeneration processes, phase transition aspects, and bixin biosynthesis. Additionally, we have conducted gene editing associated with these processes. The advancements in this field are expected to enhance breeding practices and contribute to the overall improvement of this significant woody species. Here, we present a step-by-step protocol based on somatic embryogenesis and an optimized transformation protocol utilizing Agrobacterium tumefaciens.


Subject(s)
Agrobacterium tumefaciens , Bixaceae , Transformation, Genetic , Agrobacterium tumefaciens/genetics , Bixaceae/genetics , Bixaceae/metabolism , Tissue Culture Techniques/methods , Plant Somatic Embryogenesis Techniques/methods , Gene Editing/methods , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development
3.
J Exp Bot ; 75(5): 1390-1406, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37975812

ABSTRACT

Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.


Subject(s)
Abscisic Acid , Bixaceae , Plant Extracts , Bixaceae/genetics , Bixaceae/metabolism , Abscisic Acid/metabolism , Proteomics , Plant Breeding , Carotenoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...