Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Med Microbiol ; 304(8): 990-1000, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25127423

ABSTRACT

Pseudomonas aeruginosa is an opportunistic human pathogen responsible for causing a huge variety of acute and chronic infections with significant levels of morbidity and mortality. Its success as a pathogen comes from its genetic/metabolic plasticity, intrinsic/acquired antimicrobial resistance, capacity to form biofilm and expression of numerous virulence factors. Herein, we have analyzed the genetic variability, antimicrobial susceptibility as well as the production of metallo-ß-lactamases (MBLs) and virulence attributes (elastase, pyocyanin and biofilm) in 96 strains of P. aeruginosa isolated from different anatomical sites of patients attended at Brazilian hospitals. Our results revealed a great genetic variability, in which 86 distinct RAPD types (89.6% of polymorphisms) were detected. Regarding the susceptibility profile, 48 strains (50%) were resistant to the antimicrobials, as follows: 22.92% to the three tested antibiotics, 12.5% to both imipenem and meropenem, 11.46% to ceftazidime only, 2.08% to imipenem only and 1.04% to both ceftazidime and meropenem. Out of the 34 clinical strains of P. aeruginosa resistant to both imipenem and meropenem, 25 (73.53%) were MBL producers by phenotypic method while 12 (35.29%) were PCR positive for the MBL gene SPM-1. All P. aeruginosa strains produced pyocyanin, elastase and biofilm, although in different levels. Some associations were demonstrated among the susceptibility and/or production of these virulence traits with the anatomical site of strain isolation. For instance, almost all strains isolated from urine (85.71%) were resistant to the three antibiotics, while the vast majority of strains isolated from rectum (95%) and mouth (66.67%) were susceptible to all tested antibiotics. Urine isolates produced the highest pyocyanin concentration (20.15±5.65 µg/ml), while strains isolated from pleural secretion and mouth produced elevated elastase activity (1441.43±303.08 FAU) and biofilm formation (OD590 0.676±0.32), respectively. Also, MBL-positive strains produced robust biofilm compared to MBL-negative strains. Collectively, the production of site-dependent virulence factors can be highlighted as potential therapeutic targets for the treatment of infections caused by heterogeneous and resistant strains of P. aeruginosa.


Subject(s)
Genetic Variation , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Body Fluids/microbiology , Brazil , Drug Resistance, Bacterial , Genotype , Humans , Microbial Sensitivity Tests , Molecular Typing , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/physiology , Random Amplified Polymorphic DNA Technique , Virulence , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...