Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res (Camb) ; 9(1): 19-27, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32440335

ABSTRACT

Ethnopharmacobotanical information reports that Parkinsonia aculeata infusion is used to control diabetes-related complications and dyslipidemia. However, few studies are reported on the safe use of this species. The aim of this study is to evaluate the acute toxicity, embryotoxicity and cytotoxicity of a polar fraction obtained from hydroethanolic extract of P. aculeata (PfrHEPA). For the acute toxicity test, we considered the Up and Down method which the guidelines are described by the Organization for Economic Cooperation and Development (OECD N°425). The animals were treated with PfrHEPA (2000 mg/kg) or with distilled water (10 ml/kg) by gavage and observed from Day 1 to14. For embryotoxicity assay, zebrafish embryos were exposed to PfrHEPA (100 mg/L) and toxicity parameters were observed during four consecutive days. The cytotoxicity of PfrHEPA (5, 10, 25, 50, 75 and 100 µg/ml, respectively) was performed on normal cell lines (mesenchymal stem cells, African green monkey renal cells and mouse pre-adipocytes 3 T3-L1 using the MTT salt reduction assay. In the acute toxicity test, no mortality was observed in mice treated with PfrHEPA (2000 mg/kg), as well as behavioral changes, histopathological abnormalities and hematological and biochemical variables. In the embryotoxicity test, no abnormal changes related to the toxicological parameters were observed in the period of 96 h. Regarding the cytotoxicity assay, PfrHEPA showed no cytotoxic effect on the normal cell lines tested, with an IC50 value > 100 µg/ml. These results suggest the safe use of P. aculeata, however, more trials are needed for PfrHEPA to be presented as new safe therapeutic proposal for the control of metabolic disorders.

2.
Aquat Toxicol ; 205: 213-226, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30408655

ABSTRACT

Acetylcholinesterase (AChE; EC 3.1.1.7) is a serine hydrolase, whose main function is to modulate neurotransmission at cholinergic synapses. It is, therefore, the primary target of some pesticides and heavy metals. Its inhibition in aquatic organisms has been used as an indicator of the presence of these pollutants in water bodies. The present study aimed to characterize physicochemical and kinetic parameters of brain AChE in the benthic fish Hoplosternum littorale and to analyze the in vitro effects of pesticides (dichlorvos, diazinon, chlorpyrifos, parathion-methyl, temephos, carbaryl, carbofuran, aldicarb, diflubenzuron, novaluron and pyriproxyfen) and metal ions (As3+, Cd2+, Cu2+, Fe2+, Mn2+, Mg2+, K+, Pb2+, Hg2+, Zn2+) investigating the potential of this enzyme as environmental biomarker based on current regulations. Specific substrates and inhibitors have indicated AChE to be the predominant cholinesterase (ChE) in the brain of H. littorale. Peak activity was observed at pH 8.0 and 30 °C. The enzymatic activity is otherwise moderately thermostable (≈ 50% activity at 45 °C). The enzyme can reduce the activation energy of acetylthiocholine hydrolysis reaction to 8.34 kcal mol-1 while reaching a rate enhancement of 106. Among the pesticides under study, dichlorvos presented an IC50 value below the maximum concentrations allowed by legislation. This study presents the first report on the inhibition of brain AChE activity from Siluriformes by the pesticides novaluron and pyriproxyfen. Mercury ion also exerted a strong inhibitory effect on its enzymatic activity. The H. littorale enzyme thus has the potential to function as an in vitro biomarker for the presence of the pesticide dichlorvos as well as mercury in areas of mining and industrial discharge.


Subject(s)
Acetylcholinesterase/metabolism , Brain/drug effects , Catfishes/physiology , Environmental Monitoring/methods , Pesticides/toxicity , Animals , Brain/enzymology , Enzyme Activation/drug effects , Ions/analysis , Ions/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Pesticides/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Aquat Toxicol ; 177: 182-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27288599

ABSTRACT

This contribution aimed to characterize physicochemical and kinetic parameters of the brain cholinesterases (ChEs) from Parachromis managuensis and investigate the in vitro effects of pesticides and metal ions on its activity intending to propose as biomarker. This species is suitable for this investigation because (1) it was recently introduced in Brazil becoming invasive (no restrictions on capture) and (2) occupies the top of the food chain (being subject to bioaccumulation). The enzyme extract was exposed to 10 metal ions (Al(3+), Ba(2+), Cd(2+), Cu(2+), Hg(2+), Mg(2+), Mn(2+), Pb(2+), Fe(2+) and Zn(2+)) and ChEs selective inhibitors (BW284c51, Iso-OMPA, neostigmine and serine). The extract was also incubated with organophosphate (dichlorvos) and carbamate pesticides (carbaryl and carbofuran). Inhibition parameters (IC20, IC50 and ki) were determined. Selective inhibitors and kinetic parameters confirmed acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) -like as responsible for the ChE activities, most AChE. The IC50 values for pesticides were: 1.68µM (dichlorvos); 4.35µM (carbaryl) and 0.28µM (carbofuran). Most of the analyzed ions did not show significant effect at 1mM (p=0.05), whereas the following ions inhibited the enzyme activity in the order: Hg(2+)>Cu(2+)>Cd(2+)>Zn(2+). Mercury ion strongly inhibited the enzyme activity (IC20=0.7µM). The results about allow to conclude that P. managuensis brain AChE is a potential biomarker for heavy metals and pesticides under study, mainly for the carbamate carbofuran once it was capable to detect 6-fold lower levels than the limit concentration internationally recommended.


Subject(s)
Acetylcholinesterase/metabolism , Brain/enzymology , Cichlids/metabolism , Metals, Heavy/toxicity , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Cholinesterase Inhibitors/metabolism , Inhibitory Concentration 50 , Ions/metabolism , Kinetics , Metals, Heavy/metabolism , Pesticides/metabolism , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...