Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931692

ABSTRACT

This work proposes an implementation of the SHA-256, the most common blockchain hash algorithm, on a field-programmable gate array (FPGA) to improve processing capacity and power saving in Internet of Things (IoT) devices to solve security and privacy issues. This implementation presents a different approach than other papers in the literature, using clustered cores executing the SHA-256 algorithm in parallel. Details about the proposed architecture and an analysis of the resources used by the FPGA are presented. The implementation achieved a throughput of approximately 1.4 Gbps for 16 cores on a single FPGA. Furthermore, it saved dynamic power, using almost 1000 times less compared to previous works in the literature, making this proposal suitable for practical problems for IoT devices in blockchain environments. The target FPGA used was the Xilinx Virtex 6 xc6vlx240t-1ff1156.

2.
Sensors (Basel) ; 22(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35957287

ABSTRACT

COVID-19, the illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus belonging to the Coronaviridade family, a single-strand positive-sense RNA genome, has been spreading around the world and has been declared a pandemic by the World Health Organization. On 17 January 2022, there were more than 329 million cases, with more than 5.5 million deaths. Although COVID-19 has a low mortality rate, its high capacities for contamination, spread, and mutation worry the authorities, especially after the emergence of the Omicron variant, which has a high transmission capacity and can more easily contaminate even vaccinated people. Such outbreaks require elucidation of the taxonomic classification and origin of the virus (SARS-CoV-2) from the genomic sequence for strategic planning, containment, and treatment of the disease. Thus, this work proposes a high-accuracy technique to classify viruses and other organisms from a genome sequence using a deep learning convolutional neural network (CNN). Unlike the other literature, the proposed approach does not limit the length of the genome sequence. The results show that the novel proposal accurately distinguishes SARS-CoV-2 from the sequences of other viruses. The results were obtained from 1557 instances of SARS-CoV-2 from the National Center for Biotechnology Information (NCBI) and 14,684 different viruses from the Virus-Host DB. As a CNN has several changeable parameters, the tests were performed with forty-eight different architectures; the best of these had an accuracy of 91.94 ± 2.62% in classifying viruses into their realms correctly, in addition to 100% accuracy in classifying SARS-CoV-2 into its respective realm, Riboviria. For the subsequent classifications (family, genera, and subgenus), this accuracy increased, which shows that the proposed architecture may be viable in the classification of the virus that causes COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Neural Networks, Computer , Pandemics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL