Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 26(2): 509-522, 2020 02.
Article in English | MEDLINE | ID: mdl-31486174

ABSTRACT

Tropical forests store large amounts of carbon and high biodiversity, but are being degraded at alarming rates. The emerging global Forest and Landscape Restoration (FLR) agenda seeks to limit global climate change by removing carbon dioxide from the atmosphere through the growth of trees. In doing so, it may also protect biodiversity as a free cobenefit, which is vital given the massive shortfall in funding for biodiversity conservation. We investigated whether natural forest regeneration on abandoned pastureland offers such cobenefits, focusing for the first time on the recovery of taxonomic diversity (TD), phylogenetic diversity (PD) and functional diversity (FD) of trees, including the recovery of threatened and endemic species richness, within isolated secondary forest (SF) fragments. We focused on the globally threatened Brazilian Atlantic Forest, where commitments have been made to restore 1 million hectares under FLR. Three decades after land abandonment, regenerating forests had recovered ~20% (72 Mg/ha) of the above-ground carbon stocks of a primary forest (PF), with cattle pasture containing just 3% of stocks relative to PFs. Over this period, SF recovered ~76% of TD, 84% of PD and 96% of FD found within PFs. In addition, SFs had on average recovered 65% of threatened and ~30% of endemic species richness of primary Atlantic forest. Finally, we find positive relationships between carbon stock and tree diversity recovery. Our results emphasize that SF fragments offer cobenefits under FLR and other carbon-based payments for ecosystem service schemes (e.g. carbon enhancements under REDD+). They also indicate that even isolated patches of SF could help to mitigate climate change and the biodiversity extinction crisis by recovering species of high conservation concern and improving landscape connectivity.


Subject(s)
Ecosystem , Forests , Animals , Biodiversity , Brazil , Cattle , Conservation of Natural Resources , Phylogeny , Tropical Climate
2.
PLoS One ; 14(8): e0220804, 2019.
Article in English | MEDLINE | ID: mdl-31390381

ABSTRACT

Many efforts have been made to understand the pathogenesis of bovine mastitis to reduce losses and promote animal welfare. Staphylococcus aureus may cause bovine clinical mastitis, but it is mainly associated with subclinical infection, which is usually persistent and can easily reoccur. Here, we conducted a comparative genomic analysis between strains of S. aureus causing subclinical infection (Sau170, 302, 1269, 1364), previously sequenced by our group, and two well-characterized strains causing clinical mastitis (N305 and RF122) to find differences that could be linked to mastitis outcome. A total of 146 virulence-associated genes were compared and no appreciable differences were found between the bacteria. However, several nonsynonymous single nucleotide polymorphisms (SNPs) were identified in genes present in the subclinical strains when compared to RF122 and N305, especially in genes encoding host immune evasion and surface proteins. The secreted and surface proteins predicted by in silico tools were compared through multidimensional scaling analysis (MDS), revealing a high degree of similarity among the strains. The comparison of orthologous genes by OrthoMCL identified a membrane transporter and a lipoprotein as exclusive of bacteria belonging to the subclinical and clinical groups, respectively. No hit was found in RF122 and N305 for the membrane transporter using BLAST algorithm. For the lipoprotein, sequences of Sau170, 302, 1269, and 1364 with identities between 68-73% were found in the MDS dataset. A conserved region found only in the lipoprotein genes of RF122 and N305 was used for primer design. Although the polymerase chain reaction (PCR) on field isolates of S. aureus did not validate the findings for the transporter, the lipoprotein was able to separate the clinical from the subclinical isolates. These results show that sequence variation among bovine S. aureus, and not only the presence/absence of virulence factors, is an important aspect to consider when comparing isolates causing different mastitis outcomes.


Subject(s)
Genomics , Mastitis, Bovine/microbiology , Staphylococcus aureus/genetics , Animals , Cattle , DNA, Bacterial/genetics , Female , Genome, Bacterial , Lipoproteins/genetics , Membrane Transport Proteins/genetics , Polymorphism, Single Nucleotide , Staphylococcal Infections/microbiology , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...