Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Acta Trop ; 256: 107267, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38777256

ABSTRACT

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi (T. cruzi), is a neglected disease endemic to some Latin American countries, including Brazil. Soon after infection, individuals develop an acute phase, which in most cases is asymptomatic and may go undetected. However, when CD is detected early, notification in the Notifiable Diseases Information System (SINAN), is mandatory. This study aimed to evaluate the information registered in the SINAN database and to determine the epidemiological profile of acute CD in Northeast Brazil, an endemic region, from 2001 to 2021. According to this survey, 1,444 cases of acute CD were reported in the Northeastern region of Brazil during this period. During the first six years, referred to as period 1, 90.24% of the notifications were registered, while the number of notifications significantly decreased in the subsequent years, referred to as period 2. Most individuals diagnosed with acute CD were Afro-Brazilian adults. All known routes of infection by the parasite were reported. Vector-borne transmission was predominant during period 1 (73.29%) and oral transmission during period 2 (58.87%). All nine states in Northeast Brazil reported cases in both periods. A higher incidence of disease was reported in Rio Grande do Norte (RN) during period 1, and in Maranhão (MA) during period 2. Our results show that CD remains a significant public health challenge.


Subject(s)
Chagas Disease , Chagas Disease/epidemiology , Chagas Disease/transmission , Brazil/epidemiology , Humans , Male , Adult , Female , Middle Aged , Adolescent , Child , Child, Preschool , Young Adult , Disease Notification/statistics & numerical data , Infant , Aged , Incidence , Trypanosoma cruzi , Acute Disease/epidemiology , Infant, Newborn , Aged, 80 and over
2.
J Appl Lab Med ; 9(3): 456-467, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38321537

ABSTRACT

BACKGROUND: In view of the scientific gap in knowledge of the involvement of the B-cell compartment and clinical prognostic in SARS-CoV-2 infection, this work aims to evaluate the B-cell subsets and the presence of specific IgM and IgG, as well as neutralizing antibodies against SARS-CoV-2, in unvaccinated patients diagnosed with COVID-19. METHODS: This study included 133 patients with COVID-19. Cellular components were assessed by flow cytometry, and immunoglobulin levels and reactivity were measured by indirect enzyme-linked immunosorbent assay. RESULTS: Our results showed no changes in less differentiated B cells. However, non-switched memory B cells (NS-MBCs) and class-switched memory B cells (CS-MBCs) were reduced in the patients with moderate disease. Also, plasmablasts and double-negative (DN) or "atypical" memory B cells were increased in groups of patients with moderate to critical conditions. In addition, the production of IgM, IgG, and neutralizing antibodies against SARS-CoV-2 demonstrated a positive correlation between the positivity of antibodies against SARS-CoV-2 and disease severity. Besides being related to the development of a more severe course of the disease, the increase in DN B-cell count also contributed to a poorer disease outcome in patients with a higher percentage of these cells. On the other hand, we observed an increase in the absolute number of CS-MBCs in patients with greater chances of survival. CONCLUSIONS: This study demonstrates that the B-cell compartment may contribute to the development of clinical symptoms of COVID-19, with changes in B-cell subset counts linked to disease course and patient prognosis.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Biomarkers , COVID-19 , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19/mortality , COVID-19/virology , Male , Female , Middle Aged , Prognosis , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Biomarkers/blood , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Aged , B-Lymphocyte Subsets/immunology , Severity of Illness Index
3.
Mar Drugs ; 21(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37623715

ABSTRACT

Chagas disease, sleeping sickness and malaria are infectious diseases caused by protozoan parasites that kill millions of people worldwide. Here, we performed in vitro assays of Pa-MAP, Pa-MAP1.9, and Pa-MAP2 synthetic polyalanine peptides derived from the polar fish Pleuronectes americanus toward Trypanosoma cruzi, T. brucei gambiense and Plasmodium falciparum activities. We demonstrated that the peptides Pa-MAP1.9 and Pa-MAP2 were effective to inhibit T. brucei growth. In addition, structural analyses using molecular dynamics (MD) studies showed that Pa-MAP2 penetrates deeper into the membrane and interacts more with phospholipids than Pa-MAP1.9, corroborating the previous in vitro results showing that Pa-MAP1.9 acts within the cell, while Pa-MAP2 acts via membrane lysis. In conclusion, polyalanine Pa-MAP1.9 and Pa-MAP2 presented activity against bloodstream forms of T. b. gambiense, thus encouraging further studies on the application of these peptides as a treatment for sleeping sickness.


Subject(s)
Flounder , Trypanosomiasis, African , Animals , Peptides/pharmacology , Cell Death , Fishes
4.
Immunology ; 169(3): 358-368, 2023 07.
Article in English | MEDLINE | ID: mdl-36855300

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). An adequate T cell response is essential not only for fighting disease but also for the creation of immune memory. Thus, the present study aims to evaluate the T cells of patients with moderate, severe and critical COVID-19 not only at the time of illness but also 2 months after diagnosis to observe whether changes in this compartment persist. In this study, 166 COVID-19 patients were stratified into moderate/severe and critical disease categories. The maturation and activation of T cells were evaluated through flow cytometry. In addition, Treg cells were analysed. Until 15 days after diagnosis, patients presented a reduction in absolute and relative T lymphocyte counts. After 2 months, in moderate/severe patients, the counts returned to a similar level as that of the control group. In convalescent patients who had a critical illness, absolute T lymphocyte values increased considerably. Patients with active disease did not show differentiation of T cells. Nonetheless, after 2 months, patients with critical COVID-19 showed a significant increase in CD4+ EMRA (CD45RA+ effector memory) T lymphocytes. Furthermore, COVID-19 patients showed delayed T cell activation and reduced CD8+ suppressor T cells even 2 months after diagnosis. A reduction in CD4+ Treg cells was also observed, and their numbers returned to a similar level as that of healthy controls in convalescent patients. The results demonstrate that COVID-19 patients have a delayed activation and differentiation of T cells. In addition, these patients have a great reduction of T cells with a suppressor phenotype.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Differentiation
5.
Spec Care Dentist ; 43(5): 727-730, 2023.
Article in English | MEDLINE | ID: mdl-36648613

ABSTRACT

AIMS: Mucormycosis is a rare and aggressive fungal infection with a high mortality rate because of its rapidly progressive and destructive nature. The oral cavity is often affected under opportunistic conditions. We report a 34-year-old woman diagnosed with acute myeloid leukemia complained of slight swelling on the right side of her face with toothache and gingival swelling. An incisional biopsy was performed, and the specimen analysis revealed broad aseptate hyphae with a ribbon-like appearance, which is characteristic of opportunistic Mucorales infection. METHODS AND RESULTS: The oral lesion worsened, and invasion of the fungal infection into the maxillary sinus, nasal cavity, ethmoidal air cells, and sphenoid and frontal sinuses was observed. Partial maxillectomy was performed concomitantly with the ongoing chemotherapy for leukemia. A maxillofacial prosthesis was used for functional rehabilitation. CONCLUSION: Successful management requires a multimodal approach. In this case, the patient required different systemic approaches for treating leukemia and the fungal infection as well as rehabilitation with an obturator prosthesis.


Subject(s)
Leukemia, Myeloid, Acute , Mucormycosis , Oral Ulcer , Osteonecrosis , Female , Humans , Adult , Mucormycosis/complications , Mucormycosis/diagnosis , Mucormycosis/drug therapy , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/drug therapy , Osteonecrosis/complications
6.
Comput Biol Med ; 152: 106347, 2023 01.
Article in English | MEDLINE | ID: mdl-36493734

ABSTRACT

Auranofin is a thioredoxin reductase-1 inhibitor originally approved for the treatment of rheumatoid arthritis. Recently, auranofin has been repurposed as an anticancer drug, with pharmacological activity reported in multiple cancer types. In this study, we characterized transcriptional and genetic alterations associated with auranofin response in cancer. By integrating data from an auranofin cytotoxicity screen with transcriptome profiling of lung cancer cell lines, we identified an auranofin resistance signature comprising 29 genes, most of which are classical targets of the transcription factor NRF2, such as genes involved in glutathione metabolism (GCLC, GSR, SLC7A11) and thioredoxin system (TXN, TXNRD1). Pan-cancer analysis revealed that mutations in NRF2 pathway genes, namely KEAP1 and NFE2L2, are strongly associated with overexpression of the auranofin resistance gene set. By clustering cancer types based on auranofin resistance signature expression, hepatocellular carcinoma, and a subset of non-small cell lung cancer, head-neck squamous cell carcinoma, and esophageal cancer carrying NFE2L2/KEAP1 mutations were predicted resistant, whereas leukemia, lymphoma, and multiple myeloma were predicted sensitive to auranofin. Cell viability assays in a panel of 20 cancer cell lines confirmed the augmented sensitivity of hematological cancers to auranofin; an effect associated with dependence upon glutathione and decreased expression of NRF2 target genes involved in GSH synthesis and recycling (GCLC, GCLM and GSR) in these cancer types. In summary, the omics-based identification of sensitive/resistant cancers and genetic alterations associated with these phenotypes may guide an appropriate repurposing of auranofin in cancer therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Auranofin/pharmacology , Auranofin/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Drug Repositioning , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/therapeutic use , Glutathione/metabolism , Glutathione/therapeutic use
7.
PLoS Negl Trop Dis ; 16(12): e0010713, 2022 12.
Article in English | MEDLINE | ID: mdl-36508471

ABSTRACT

BACKGROUND: Chagas disease (ChD) is caused by Trypanosoma cruzi. The genetic structure of the species is divided into seven distinct genetic groups, TcI to TcVI, and Tcbat, which have shown differences in terms of geographic distribution, biological properties, and susceptibility to drugs. However, the association between genetic variability and clinical forms of ChD has not yet been fully elucidated. The predominance of TcII and TcVI discrete typing units (DTUs) (genetic groups) is known to occur in several Brazilian regions and is associated with both the domestic and the wild cycles of ChD. Thus, this study aimed to verify the genotypes of the parasites present in 330 patients with chronic Chagas cardiomyopathy (CCC) from different Brazilian states attended at the Clinical Hospital of the Ribeirão Preto Medical School and to assess the existence of a correlation between the clinical forms with the main cardiovascular risk factors and the genetics of the parasite. METHODOLOGY PRINCIPAL FINDINGS: All patients with CCC were clinically evaluated through anamnesis, physical examination, biochemical tests, 12-lead electrocardiogram, echocardiogram and chest X-ray. Peripheral blood (5 mL) was collected in guanidine/ethylenediaminetetraacetic acid from each patient for DNA extraction and real-time polymerase chain reaction (PCR) for Chagas disease and genotyping of the parasite in the 7 DTUs. Parasite genotyping was performed using conventional multilocus PCR. Samples of only 175 patients were positive after amplification of the specific genes contained in the T. cruzi genotyping criteria. TcII (64/175), TcVI (9/175), and TcI (3/175) DTUs were predominant, followed by TcII/TcV/TcVI (74/175), and TcII/TcVI (23/175). The TcIII and TcIV DTU´s was detected in only one sample of CCC patients. CONCLUSIONS/SIGNIFICANCE: Our data corroborate previous findings, indicating the predominance of the TcII genotype in patients with CCC of Brazilian origin. Moreover, this study pioneered disclosing a direct correlation between the TcII DTU and severe CCC.


Subject(s)
Chagas Cardiomyopathy , Chagas Disease , Trypanosoma cruzi , Humans , Chagas Cardiomyopathy/epidemiology , Chagas Cardiomyopathy/parasitology , Brazil/epidemiology , Chagas Disease/parasitology , Trypanosoma cruzi/genetics , Genotype , Real-Time Polymerase Chain Reaction , Genetic Variation
9.
Toxicol Appl Pharmacol ; 454: 116245, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36116562

ABSTRACT

The present study investigated the effects of perinatal exposure to glyphosate-based herbicide (GBH) in offspring's liver. Pregnant Wistar rats were exposed to GBH (70 mg glyphosate/Kg body weight/day) in drinking water from gestation day 5 to postnatal day 15. The perinatal exposure to GBH increased 45Ca2+ influx in offspring's liver. Pharmacological tools indicated a role played by oxidative stress, phospholipase C (PLC) and Akt pathways, as well as voltage-dependent Ca2+ channel modulation on GBH-induced Ca2+ influx in offspring's liver. In addition, changes in the enzymatic antioxidant defense system, decreased GSH content, lipid peroxidation and protein carbonylation suggest a connection between GBH-induced hepatotoxic mechanism and redox imbalance. The perinatal exposure to GBH also increased the enzymatic activities of transaminases and gamma-glutamyl transferase in offspring's liver and blood, suggesting a pesticide-induced liver injury. Moreover, we detected increased iron levels in liver, blood and bone marrow of GBH-exposed rats, which were accompanied by increased transferrin saturation and decreased transferrin levels in blood. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were increased in the liver of rats perinatally exposed to GBH, which were associated with. Increased phospho-p65NFκB immunocontent. Therefore, we propose that excessive amounts of iron in offspring's liver, blood and bone marrow induced by perinatal exposure to GBH may account for iron-driven hepatotoxicity, which was associated with Ca2+ influx, oxidative damage and inflammation. Further studies will clarify whether these events can ultimately impact on liver function.


Subject(s)
Drinking Water , Herbicides , Liver Diseases , Pesticides , Animals , Antioxidants , Female , Glycine/analogs & derivatives , Herbicides/toxicity , Interleukin-6 , Iron , Pregnancy , Proto-Oncogene Proteins c-akt , Rats , Rats, Wistar , Transaminases , Transferrins , Tumor Necrosis Factor-alpha , Type C Phospholipases , Glyphosate
10.
Microb Pathog ; 171: 105730, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35995253

ABSTRACT

Apolipoprotein E (ApoE) is the major ligand for the transporting and removal of chylomicrons and lipoproteins by the liver. Since the creation of the ApoE-knockout mice, it is well established that ApoE deficiency results in spontaneous atherosclerosis in aged animals. Atherosclerosis is also observed in animals infected with Trypanosoma cruzi, a protozoan that elicits a systemic inflammatory response in mammalian hosts, culminating in damage to cardiac, neuronal, and endothelial cells. Pro-atherogenic effects related to the experimental infection with T. cruzi may be induced by inflammatory components affecting the vascular wall. Herein, we evaluated whether infection with different strains of T. cruzi worsened the atherogenic lesions observed in aged ApoE-/- mice. After four weeks of infection with Berenice-78 (Be-78) or Colombian (Col) strains of the parasite, mice presented increased CCL2 and CCL5 production and high migration of inflammatory cells to cardiac tissue. Although the infection with either strain did not affect the survival rate, only the infection with Col strain caused abundant parasite growth in blood and heart and increased aortic root lesions in ApoE-/- mice. Our findings show, for the first time that ApoE exerts a protective anti-atherosclerotic role in the aortic root of mice in the acute phase of experimental infection with the Col strain of T. cruzi. Further studies should target ApoE and nutritional interventions to modulate susceptibility to cardiovascular disabilities after T. cruzi infection, minimizing the risk of death in both experimental animals and humans.


Subject(s)
Apolipoproteins E , Atherosclerosis , Chagas Disease , Trypanosoma cruzi , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/complications , Atherosclerosis/pathology , Chagas Disease/complications , Chylomicrons , Endothelial Cells/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout
11.
Immunobiology ; 227(5): 152242, 2022 09.
Article in English | MEDLINE | ID: mdl-35870262

ABSTRACT

Single nucleotide polymorphisms (SNPs) that do not change the composition of amino acids and cause synonymous mutations (sSNPs) were previously considered to lack any functional roles. However, sSNPs have recently been shown to interfere with protein expression owing to a myriad of factors related to the regulation of transcription, mRNA stability, and protein translation processes. In patients with Chagas disease, the presence of the synonymous mutation rs1129293 in phosphatidylinositol-4,5-bisphosphate 3-kinase gamma (PIK3CG) gene contributes to the development of the chronic Chagas cardiomyopathy (CCC), instead of the digestive or asymptomatic forms. In this study, we aimed to investigate whether rs1129293 is associated with the transcription of PIK3CG mRNA and its activity by quantifying AKT phosphorylation in the heart samples of 26 chagasic patients with CCC. Our results showed an association between rs1129293 and decreased PIK3CG mRNA expression levels in the cardiac tissues of patients with CCC. The phosphorylation levels of AKT, the protein target of PI3K, were also reduced in patients with this mutation, but were not correlated with PI3KCG mRNA expression levels. Moreover, bioinformatics analysis showed that rs1129293 and other SNPs in linkage disequilibrium (LD) were associated with the transcriptional regulatory elements, post-transcriptional modifications, and cell-specific splicing expression of PIK3CG mRNA. Therefore, our data demonstrates that the synonymous SNP rs1129293 is capable of affecting the PIK3CG mRNA expression and PI3Kγ activation.


Subject(s)
Chagas Cardiomyopathy , Chagas Cardiomyopathy/genetics , Class Ib Phosphatidylinositol 3-Kinase/genetics , Humans , Phosphatidylinositol 3-Kinases , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-akt , RNA, Messenger/genetics , RNA, Messenger/metabolism , Silent Mutation
12.
Immunology ; 165(4): 481-496, 2022 04.
Article in English | MEDLINE | ID: mdl-35146763

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and marked by an intense inflammatory response and immune dysregulation in the most severe cases. In order to better clarify the relationship between peripheral immune system changes and the severity of COVID-19, this study aimed to evaluate the frequencies and absolute numbers of peripheral subsets of neutrophils, monocytes, and dendritic cells (DCs), in addition to quantifying the levels of inflammatory mediators. One hundred fifty-seven COVID-19 patients were stratified into mild, moderate, severe, and critical disease categories. The cellular components and circulating cytokines were assessed by flow cytometry. Nitric oxide (NOx) and myeloperoxidase (MPO) levels were measured by colourimetric tests. COVID-19 patients presented neutrophilia, with signs of emergency myelopoiesis. Alterations in the monocytic component were observed in patients with moderate to critical illness, with an increase in classical monocytes and a reduction in nonclassical monocytes, in addition to a reduction in the expression of HLA-DR in all subtypes of monocytes, indicating immunosuppression. DCs, especially plasmacytoid DCs, also showed a large reduction in moderate to critical patients. COVID-19 patients showed an increase in MPO, interleukin (IL)-12, IL-6, IL-10, and IL-8, accompanied by a reduction in IL-17A and NOx. IL-10 levels ≥14 pg/ml were strongly related to the worst outcome, with a sensitivity of 78·3% and a specificity of 79·1%. The results of this study indicate the presence of systemic effects induced by COVID-19, which appear to be related to the pathophysiology of the disease, highlighting the potential of IL-10 as a possible prognostic biomarker for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Cross-Sectional Studies , Cytokines/metabolism , Humans , Immunity , Severity of Illness Index
13.
Environ Toxicol ; 37(6): 1297-1309, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35128807

ABSTRACT

Multiple myeloma (MM) is a clonal plasma cell malignancy that remains incurable to date. Thus, the aims of this study were to evaluate the involvement of the NF-κB and PI3K/Akt/mTOR pathways in the cytotoxicity of stypoldione, an o-quinone isolated from the brown algae Stypopodium zonale, in MM cells (MM1.S). The cytotoxic effect was evaluated in MM1.S cells and peripheral blood mononuclear cells (PBMCs) by MTT assay. The stypoldione reduced the cell viability of MM1.S cells in a concentration and time-dependent manner (IC50 in MM.1S from 2.55 to 5.38 µM). However, it was also cytotoxic to PBMCs, but at a lower range. Additionally, no significant hemolysis was observed even at concentration up to 10 times the IC50 . Apoptotic cell death was confirmed by cell morphology and Annexin V-FITC assay. Stypoldione induced intrinsic and extrinsic apoptosis by increasing FasR expression and reactive oxygen species (ROS) production, inverting the Bax/Bcl-2 ratio, and inducing ΔΨm loss, which resulted in AIF release and caspase-3 activation. It also increased Ki-67 and survivin expression and inhibited the NF-κB and PI3K/Akt/mTOR pathways. These results suggest that stypoldione is a good candidate for the development of new drugs for MM treatment.


Subject(s)
NF-kappa B , Phaeophyceae , Apoptosis , Leukocytes, Mononuclear/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quinones/pharmacology , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism
14.
Pathol Res Pract ; 230: 153750, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34971844

ABSTRACT

The Ki-67 antigen is a nuclear protein with proven prognostic value in different neoplasms and recognizes the predictive value in breast cancer (BC). No consensus exists on the ideal cutoff point. In this study, Ki-67 expression was evaluated in samples of BC by flow cytometry (FC) and compared with immunohistochemical (IHC) examination. For this, the BC tissue samples were sectioned, macerated, filtered, and marked with anti-Ki-67 FITC and anti-CD45 V500 antibodies. We selected the neoplastic cells according to CD45 expression and size and internal complexity (FSC × SSC) using the Infinicity 1.7 software. Lymphocytes were negative control. We compared the results with IHC analyses carried out in parallel and independently. The expression of Ki-67 was evaluated in both methodologies through Bland-Altman analysis. Among the 44 samples analyzed, only three showed bias higher than the established confidence interval (mean bias 2.1%, p = 0.62), with no significant difference for the perfect mean bias (0%). Therefore, one can state that FC provides results equivalent to IHC analysis and possibly analyzes more cells simultaneously. The results obtained in this study show the absence of observational bias through software analysis in a larger number of tumor cell populations. We can conclude that FC may be a promising alternative method for investigating Ki-67 in solid tumours.


Subject(s)
Breast Neoplasms/immunology , Cell Proliferation , Flow Cytometry , Immunohistochemistry , Immunophenotyping/methods , Ki-67 Antigen/analysis , Breast Neoplasms/pathology , Comparative Effectiveness Research , Female , Humans , Phenotype , Predictive Value of Tests , Reproducibility of Results
15.
Hematol., Transfus. Cell Ther. (Impr.) ; 43(4): 499-506, Oct.-Dec. 2021. tab
Article in English | LILACS | ID: biblio-1350821

ABSTRACT

ABSTRACT Introduction: Flow cytometry has become an increasingly important tool in the clinical laboratory for the diagnosis and monitoring of many hematopoietic neoplasms. This method is ideal for immunophenotypic identification of cellular subpopulations in complex samples, such as bone marrow and peripheral blood. In general, 4-color panels appear to be adequate, depending on the assay. In acute leukemias (ALs), it is necessary identify and characterize the population of abnormal cells in order to recognize the compromised lineage and classify leukemia according to the WHO criteria. Although the use of eightto ten-color immunophenotyping panels is wellestablished, many laboratories do not have access to this technology. Objective and Method: In 2015, the Brazilian Group of Flow Cytometry (Grupo Brasileiro de Citometria de Fluxo, GBCFLUX) proposed antibody panels designed to allow the precise diagnosis and characterization of AL within available resources. As many Brazilian flow cytometry laboratories use four-color immunophenotyping, the GBCFLUX has updated that document, according to current leukemia knowledge and after a forum of discussion and validation of antibody panels. Results: Recommendations for morphological analysis of bone marrow smears and performing screening panel for lineage (s) identification of AL were maintained from the previous publication. The lineage-oriented proposed panels for B and T cell acute lymphoblastic leukemia (ALL) and for acute myeloid leukemia (AML) were constructed for an appropriate leukemia classification. Conclusion: Three levels of recommendations (i.e., mandatory, recommended, and optional) were established to enable an accurate diagnosis with some flexibility, considering local laboratory resources and patient-specific needs.


Subject(s)
Leukemia/diagnosis , Flow Cytometry , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antibodies, Monoclonal
16.
Clin Chim Acta ; 523: 504-512, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34762935

ABSTRACT

BACKGROUND AND AIMS: Laboratory diagnosis of breast cancer (BC) is done by morphological analysis and immunohistochemistry (IHC). However, this methodology still has some limitations. The aim of this study is to validate flow cytometry (FC) immunophenotyping to investigate diagnostic and prognostic markers of BC. METHODS: Tumor samples from surgical specimens of patients previously diagnosed with BC, were first sliced and then macerated together with PBS. Then, sample was filtered and the single cell suspension obtained was labeled with antibodies against estrogen (ERα), progesterone (PR) and HER2 receptors and CD45. The results were compared, in terms of sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), with reference methods. RESULTS: Results obtained comparing FC with reference methods were: ERα detection (sensitivity: 75%; specificity: 90%; PPV: 96.7%; NPV: 47.4%); PR detection (sensitivity: 72%; specificity: 70%; PPV: 79.3%; NPV: 60.8%); HER2 detection (sensitivity: 80%; specificity: 90.2%; PPV: 66.7%; NPV: 94.9%). CONCLUSION: The results obtained show the capacity of this methodology on BC markers differentiation. FC, together with morphological analysis and IHC can overcome individual limitations of each methodology and provide reliable results on a faster and efficient manner, resulting in improvements on BC diagnosis and prognosis.


Subject(s)
Breast Neoplasms , Progesterone , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Female , Flow Cytometry , Humans , Prognosis , Receptor, ErbB-2 , Receptors, Estrogen , Receptors, Progesterone
17.
Front Cardiovasc Med ; 8: 741347, 2021.
Article in English | MEDLINE | ID: mdl-34604362

ABSTRACT

Background: Chronic Chagas disease (CChD), one of the infectious parasitic diseases with the greatest social and economic impact upon a large part of the American continent, has distinct clinical manifestations in humans (cardiac, digestive, or mixed clinical forms). The mechanisms underlying the development of the most common and ominous clinical form, the chronic Chagas cardiomyopathy (CCC) have not been completely elucidated, despite the fact that a high intensity of parasite persistence in the myocardium is deemed responsible for an untoward evolution of the disease. The present study aimed to assess the parasite load CCC and its relation to left ventricular ejection fraction (LVEF), a definite prognostic marker in patients with CCC. Methods: Patients with CCC were clinically evaluated using 12-lead-electrocardiogram, echocardiogram, chest X-ray. Peripheral blood sampling (5 ml of venous blood in guanidine/EDTA) was collected from each patient for subsequent DNA extraction and the quantification of the parasite load using real-time PCR. Results: One-hundred and eighty-one patients with CCC were evaluated. A total of 140 (77.3%) had preserved left ventricular ejection fraction (of ≥40%), and 41 individuals had LV dysfunction (LVEF of <40%). A wide variation in parasite load was observed with a, mean of 1.3460 ± 2.0593 (0.01 to 12.3830) par. Eq./mL. The mean ± SD of the parasite load was 0.6768 ± 0.9874 par. Eq./mL and 3.6312 ± 2.9414 par. Eq./mL in the patients with LVEF ≥ 40% and <40%, respectively. Conclusion: The blood parasite load is highly variable and seems to be directly related to the reduction of LVEF, an important prognostic factor in CCC patients.

18.
Bioorg Chem ; 116: 105315, 2021 11.
Article in English | MEDLINE | ID: mdl-34496319

ABSTRACT

Chalcones and their derivatives have been described as promising compounds with antiproliferative activity against leukemic cells. This study aimed to investigate the cytotoxic effect of three synthetic chalcones derived from 1-naphthylacetophenone (F07, F09, and F10) in acute leukemia cell lines (K562 and Jurkat) and examine the mechanisms of cell death induced by these compounds. The three compounds were cytotoxic to K562 and Jurkat cells, with IC50 values ranging from 1.03 to 31.66 µM. Chalcones induced intrinsic and extrinsic apoptosis, resulting in activation of caspase-3 and DNA fragmentation. F07, F09, and F10 were not cytotoxic to human peripheral blood mononuclear cells, did not produce any significant hemolytic activity, and did not affect platelet aggregation after ADP stimulation. These results, combined with calculations of molecular properties, suggest that chalcones F07, F09, and F10 are promising molecules for the development of novel antileukemic drugs.


Subject(s)
Acetophenones/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Chalcones/pharmacology , Acetophenones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Chalcones/chemical synthesis , Chalcones/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship
19.
Hematol Transfus Cell Ther ; 43(4): 499-506, 2021.
Article in English | MEDLINE | ID: mdl-34127423

ABSTRACT

INTRODUCTION: Flow cytometry has become an increasingly important tool in the clinical laboratory for the diagnosis and monitoring of many hematopoietic neoplasms. This method is ideal for immunophenotypic identification of cellular subpopulations in complex samples, such as bone marrow and peripheral blood. In general, 4-color panels appear to be adequate, depending on the assay. In acute leukemias (ALs), it is necessary identify and characterize the population of abnormal cells in order to recognize the compromised lineage and classify leukemia according to the WHO criteria. Although the use of eight- to ten-color immunophenotyping panels is wellestablished, many laboratories do not have access to this technology. OBJECTIVE AND METHOD: In 2015, the Brazilian Group of Flow Cytometry (Grupo Brasileiro de Citometria de Fluxo, GBCFLUX) proposed antibody panels designed to allow the precise diagnosis and characterization of AL within available resources. As many Brazilian flow cytometry laboratories use four-color immunophenotyping, the GBCFLUX has updated that document, according to current leukemia knowledge and after a forum of discussion and validation of antibody panels. RESULTS: Recommendations for morphological analysis of bone marrow smears and performing screening panel for lineage (s) identification of AL were maintained from the previous publication. The lineage-oriented proposed panels for B and T cell acute lymphoblastic leukemia (ALL) and for acute myeloid leukemia (AML) were constructed for an appropriate leukemia classification. CONCLUSION: Three levels of recommendations (i.e., mandatory, recommended, and optional) were established to enable an accurate diagnosis with some flexibility, considering local laboratory resources and patient-specific needs.

20.
Front Cardiovasc Med ; 8: 667580, 2021.
Article in English | MEDLINE | ID: mdl-34113663

ABSTRACT

Background: Trypanosoma cruzi is a protozoan parasite that causes Chagas disease and affects 6-7 million people mainly in Latin America and worldwide. Here, we investigated the effects of hyperlipidic diets, mainly composed of olive oil or lard on experimental T. cruzi infection. C57BL/6 mice were fed two different dietary types in which the main sources of fatty acids were either monounsaturated (olive oil diet) or saturated (lard diet). Methods: After 60 days on the diet, mice were infected with 50 trypomastigote forms of T. cruzi Colombian strain. We evaluated the systemic and tissue parasitism, tissue inflammation, and the redox status of mice after 30 days of infection. Results: Lipid levels in the liver of mice fed with the lard diet increased compared with that of the mice fed with olive oil or normolipidic diets. The lard diet group presented with an increased parasitic load in the heart and adipose tissues following infection as well as an increased expression of Tlr2 and Tlr9 in the heart. However, no changes were seen in the survival rates across the dietary groups. Infected mice receiving all diets presented comparable levels of recruited inflammatory cells at 30 days post-infection but, at this time, we observed lard diet inducing an overproduction of CCL2 in the cardiac tissue and its inhibition in the adipose tissue. T. cruzi infection altered liver antioxidant levels in mice, with the lard diet group demonstrating decreased catalase (CAT) activity compared with that of other dietary groups. Conclusions: Our data demonstrated that T. cruzi growth is more favorable on tissue of mice subjected to the lard diet. Our findings supported our hypothesis of a relationship between the source of dietary lipids and parasite-induced immunopathology.

SELECTION OF CITATIONS
SEARCH DETAIL
...