Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 326: 138453, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36958497

ABSTRACT

Fenton-type advanced oxidative processes (AOP) have been employed to treat textile dyes in aqueous solution and industrial effluent. The work focused on assisting the limitations still presented by the Fenton process regarding the use of suspended iron catalysts. Soon, a nanocomposite of bacterial cellulose (BC) and magnetite (Fe3O4) was developed. It has proven to be superior to those available in the literature, exhibiting purely catalytic properties and high reusability. Its successful production was verified through analytical characterization, while its catalytic potential was investigated in the treatment of different textile matrices. In initial tests, the photo-Fenton process irradiated and catalyzed by sunlight and BC/Fe3O4 discolored 92.19% of an aqueous mixture of four textile dyes. To improve the efficiency, the design of experiments technique evaluated the influence of the variables pH, [H2O2], and the number of BC/Fe3O4 membranes. 99.82% of degradation was obtained under optimized conditions using pH 5, 150 mg L-1 of H2O2, and 11 composite membranes. Reaction kinetics followed a pseudo-first-order model, effectively reducing the organic matter (COD = 83.24% and BOD = 88.13%). The composite showed low iron leaching (1.60 ± 0.08 mg L-1) and high stability. It was recovered and reused for 15 consecutive cycles, keeping the treatment efficiency at over 90%. As for the industrial wastewater, the photo-Fenton/sunlight/BC/Fe3O4 system showed better results when combined with the physical-chemical coagulation/flocculation process previously used in the industry's WWTP. Together they reduced COD by 77.77%, also meeting the color standards (DFZ scale) for the wavelengths of 476 nm (<3 m-1), 525 nm (<5 m-1), and 620 nm (<7 m-1). Thus, the results obtained demonstrated that employing the BC/Fe3O4 composite as an iron catalyst is a suitable alternative to materials employed in suspension. This is mainly due to the high catalytic activity and power of reuse, which will reduce treatment costs.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxidation-Reduction , Textiles , Coloring Agents/chemistry , Catalysis , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 319: 137953, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36709843

ABSTRACT

The development of an original catalytic composite of bacterial cellulose (BC) and pyrite (FeS2) for environmental application was the objective of this study. Nanoparticles of the FeS2 were synthesized from the hydrothermal method and immobilized on the BC structure using ex situ methodology. In the BC, the FTIR and XRD analyzes showed the absorption band associated with the Fe-S bond and crystalline peaks attributed to the pyrite. Thus, the immobilization of the iron particles on the biopolymer was proven, producing the composite BC/FeS2. The use of the SEM technique also ratifies the composite production by identifying the fibrillar structure morphology of the cellulose covered by FeS2 particles. The total iron concentration was 54.76 ± 1.69 mg L-1, determined by flame atomic absorption analysis. TG analysis and degradation tests showed respectively the thermal stability of the new material and its high catalytic potential. A multi-component solution of textile dyes was used as the matrix to be treated via advanced oxidative processes. The composite acted as the catalyst for the Fenton and photo-Fenton processes, with degradations of 52.87 and 96.82%, respectively. The material proved stability by showing low iron leaching (2.02 ± 0.09 and 2.11 ± 0.11 mg L-1 for the respective processes). Thus, its high potential for reuse is presumed, given the remaining concentration of this metal in the BC. The results showed that the BC/FeS2 composite is suitable to solve the problems associated with using catalysts in suspension form.


Subject(s)
Cellulose , Iron , Iron/chemistry , Oxidation-Reduction , Sulfides/chemistry
3.
Water Sci Technol ; 80(6): 1163-1173, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31799960

ABSTRACT

This work presents the study of tris(2-butoxyethyl) phosphate advanced oxidation in TiO2-containing systems. Titania was immobilized on aluminum surfaces from recyclable materials and the results were compared with the suspension system. The initial concentration of photocatalyst and the oxidizing agent was optimized in a 23 experimental design and a kinetic study of the reactions was performed in the selected conditions. The experimental data were fitted to the pseudo-first-order model (rate constants estimated at 0.0129 ± 0.0009 and 0.0079 ± 0.0006 min-1 for the systems with TiO2 in suspension and immobilized, respectively). Artificial neural networks were also employed to model the experimental data and they presented correlation coefficients superior to 0.98 in all the training operations. After five cycles of degradation, the TiO2-aluminum meshes exhibited a very low decrease in photocatalytic activity (inferior to 2%). Acute phytotoxicity assays demonstrated that the byproducts of the oxidation of TBEP molecules are less toxic than the raw samples regarding lettuce seeds. For both TiO2 systems, COD decreased considerably as a consequence of the degradation. The immobilized TiO2 system achieved similar degradation rates when compared with the suspension system.


Subject(s)
Aluminum , Phosphates , Catalysis , Organophosphates , Organophosphorus Compounds , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...