Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 828: 146476, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35413393

ABSTRACT

Energy cane is a dedicated crop to high biomass production and selected during Saccharum breeding programs to fit specific industrial needs for 2G bioethanol production. Internode elongation is one of the most important characteristics in Saccharum hybrids due to its relationship with crop yield. In this study, we selected the third internode elongation of the energy cane. To characterize this process, we divided the internode into five sections and performed a detailed transcriptome analysis (RNA-Seq) and cell wall characterization. The histological analyses revealed a remarkable gradient that spans from cell division and protoxylem lignification to the internode maturation and complete vascular bundle lignification. RNA-Seq analysis revealed more than 11,000 differentially expressed genes between the sections internal. Gene ontology analyzes showed enriched categories in each section, as well as the most expressed genes in each section, presented different biological processes. We found that the internode elongation and division zones have a large number of unique genes. Evaluated the specific profile of genes related to primary and secondary cell wall formation, cellulose synthesis, hemicellulose, lignin, and growth-related genes. For each section these genes presented different profiles along the internode in elongation in energy cane. The results of this study provide an overview of the regulation of gene expression of an internode elongation in energy cane. Gene expression analysis revealed promising candidates for transcriptional regulation of energy cane lignification and evidence key genes for the regulation of internode development, which can serve as a basis for understanding the molecular regulatory mechanisms that support the growth and development of plants in the Saccahrum complex.


Subject(s)
Saccharum , Biomass , Canes , Gene Expression Regulation, Plant , Lignin , Plant Breeding , Saccharum/genetics , Saccharum/metabolism
2.
Plant Physiol Biochem ; 167: 504-516, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34425395

ABSTRACT

Commercial cultivation of sugarcane is usually carried out by planting culm segments (sett) carrying buds in their internodes. However, this is an inefficient practice due to high sprouting irregularity. In this work, we inspect the first stages of the physiological preparation of the culm for sprouting, trying to identify compounds that actively participate in this process. We compared, during the first 48 h, the metabolic profile of sugarcane against energy cane, a cultivar known to have higher sprouting speed and consistency. In fact, during this short period it was possible to observe that energy cane already had a higher physiological activity than sugarcane, with significant changes in the catabolism of amino acids, increased levels of reducing sugars, lipids and metabolic activity in the phenylpropanoid pathway. On the other hand, sugarcane samples had just begun their activity during this same period, with an increase in the level of glutamate as the most significant change, which may be linked to the strategy of these cultivars to develop their roots before leaves, opposite of what is seen for energy cane. These results contribute to the development of strategies for increasing the efficiency of sprouting in sugarcane.


Subject(s)
Saccharum , Canes , Edible Grain , Plant Leaves
3.
BMC Genomics ; 17(1): 623, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27515968

ABSTRACT

BACKGROUND: Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of plant RLKs. The functions of most LRR-RLKs have remained undiscovered, and a few that have been experimentally characterized have been shown to have important roles in growth and development as well as in defense responses. Although RLK subfamilies have been previously studied in many plants, no comprehensive study has been performed on this gene family in Citrus species, which have high economic importance and are frequent targets for emerging pathogens. In this study, we performed in silico analysis to identify and classify LRR-RLK homologues in the predicted proteomes of Citrus clementina (clementine) and Citrus sinensis (sweet orange). In addition, we used large-scale phylogenetic approaches to elucidate the evolutionary relationships of the LRR-RLKs and further narrowed the analysis to the LRR-XII group, which contains several previously described cell surface immune receptors. RESULTS: We built integrative protein signature databases for Citrus clementina and Citrus sinensis using all predicted protein sequences obtained from whole genomes. A total of 300 and 297 proteins were identified as LRR-RLKs in C. clementina and C. sinensis, respectively. Maximum-likelihood phylogenetic trees were estimated using Arabidopsis LRR-RLK as a template and they allowed us to classify Citrus LRR-RLKs into 16 groups. The LRR-XII group showed a remarkable expansion, containing approximately 150 paralogs encoded in each Citrus genome. Phylogenetic analysis also demonstrated the existence of two distinct LRR-XII clades, each one constituted mainly by RD and non-RD kinases. We identified 68 orthologous pairs from the C. clementina and C. sinensis LRR-XII genes. In addition, among the paralogs, we identified a subset of 78 and 62 clustered genes probably derived from tandem duplication events in the genomes of C. clementina and C. sinensis, respectively. CONCLUSIONS: This work provided the first comprehensive evolutionary analysis of the LRR-RLKs in Citrus. A large expansion of LRR-XII in Citrus genomes suggests that it might play a key role in adaptive responses in host-pathogen co-evolution, related to the perennial life cycle and domestication of the citrus crop species.


Subject(s)
Citrus/genetics , Evolution, Molecular , Genome, Plant , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Chromosomes, Plant/metabolism , Citrus/metabolism , Multigene Family , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/classification , Protein Serine-Threonine Kinases/metabolism
4.
Front Microbiol ; 7: 652, 2016.
Article in English | MEDLINE | ID: mdl-27242687

ABSTRACT

Prokaryotic toxin-antitoxin (TA) systems were first described as being designed to prevent plasmid loss in bacteria. However, with the increase in prokaryotic genome sequencing, recently many TAs have been found in bacterial chromosomes, having other biological functions, such as environmental stress response. To date, only few studies have focused on TA systems in phytopathogens, and their possible impact on the bacterial fitness. This may be especially important for pathogens like Xanthomonas spp., which live epiphytically before entering the host. In this study, we looked for TA systems in the genomes of 10 Xanthomonas strains. We verified that citrus-infecting pathovars have, on average, 50% more TAs than other Xanthomonas spp. and no genome harbors classical toxins such as MqsR, RelB, and HicA. Only one TA system (PIN_VapC-FitB-like/SpoVT_AbrB) was conserved among the Xanthomonas genomes, suggesting adaptive aspects concerning its broad occurrence. We also detected a trend of toxin gene loss in this genus, while the antitoxin gene was preferably maintained. This study discovers the quantitative and qualitative differences among the type II TA systems present in Xanthomonas spp., especially concerning the citrus-infecting strains. In addition, the antitoxin retention in the genomes is possibly related with the resistance mechanism of further TA infections as an anti-addiction system or might also be involved in regulation of certain specific genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...