Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 95(2): e20210330, 2023.
Article in English | MEDLINE | ID: mdl-37585893

ABSTRACT

This study investigated the effect of vegetable and fish oils with different n-3 / n-6 PUFAS ratios on the lipoprotein profile and on the development of murine breast cancer 4T1. Female Balb/c mice (6-7 weeks) received diets containing 4.0% fat during seven weeks. On the fourth week, animals were inoculated into the posterior left flank with 2.5 × 106 4T1 cells. Body weight and food intake were registered and the profile serum lipoproteins was determined. Tumor volume, histopathological and immunohistochemical studies, myeloperoxidase and N-acetylglucosaminidase activities, TNF-α, hemoglobin and VEGF levels were analysed. The highest n-3 / n-6 ratio was found in fish oil (15.8:1), followed by linseed (2.4:1), canola (1:2.1) and soybean (1:9.4) oils. Body weight, food and caloric intake, lipoprotein profile, tumor weight, tumor evolution and histopathological analysis were not different. Canola oil increased cell proliferation when compared to soybean oil, and fish oil changed the inflammatory response and increased VEGF in tumors compared to other groups. The type of fatty acid and the high ratio of n-3 / n-6 PUFAs in the diet influenced cell proliferation and inflammation in the tumor differentially, highlighting the increase of neutrophils and VEGF levels in animals fed on fish oil.


Subject(s)
Fatty Acids, Omega-3 , Vascular Endothelial Growth Factor A , Animals , Female , Mice , Plant Oils , Dietary Fats , Fatty Acids, Omega-3/analysis , Fish Oils/metabolism , Fatty Acids/analysis , Lipoproteins , Body Weight
2.
An Acad Bras Cienc ; 94(suppl 3): e20201066, 2022.
Article in English | MEDLINE | ID: mdl-36074424

ABSTRACT

We investigated the effect of dietary supplementation with kinkan orange on growth, adiposity, metabolic parameters, and oxidative stress in rats with diet-induced hypercholesterolemia. Female Wistar rats (6-8 weeks) were fed a AIN-93M diet (Control); AIN-93M diet containing 5% kinkan orange (CTkinkan); Hypercholesterolemic diet, containing 1% cholesterol and 25% fat (Hyper); or Hypercholesterolemic diet containing 5% kinkan orange (Hyperkinkan). Hypercholesterolemic diet increased body weight, adiposity, serum alanine transaminase (ALT), creatinine, cholesterol and triglycerides, hepatic total lipids, cholesterol, and triglycerides, and hepatic oxidative stress. Supplementation with kinkan reduced the serum and hepatic lipid content, decreased serum ALT, besides improving the antioxidant status in liver tissue of hypercholesterolemic animals. Moreover, HDL-cholesterol increased in both groups supplemented with kinkan orange (CTkinkan and Hyperkinkan). Our data suggest that diet supplementation with kinkan orange may consist of a valid strategy to prevent or reduce dyslipidemia and oxidative stress in hypercholesterolemic rats.


Subject(s)
Citrus sinensis , Dyslipidemias , Alanine Transaminase , Animals , Cholesterol , Citrus sinensis/metabolism , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Dyslipidemias/prevention & control , Female , Liver , Obesity/metabolism , Oxidative Stress , Rats , Rats, Wistar , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL
...