Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Res ; 480: 12-34, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31158527

ABSTRACT

Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, ß and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.


Subject(s)
Cyclodextrins/chemistry , Drug Carriers/chemistry , Humans , Polymers/chemistry
2.
RSC Adv ; 8(23): 12535-12539, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-35541230

ABSTRACT

The present work shows the synthesis of a new type of catanionic surfactant, ModCD14-BHD, which involves an anionic amphiphilic cyclodextrin and the cationic benzyl-n-hexadecyldimethylammonium (BHD). It is obtained from the simple association of the cationic surfactant benzyl-n-hexadecyldimethylammonium chloride (BHDC) and ß-cyclodextrin (ß-CD) monosubstituted with an alkenyl succinate group (Mod-ß-CD14). ModCD14-BHD form unilamellar vesicles spontaneously in water, while the individual components (BHDC and Mod-ß-CD14) do not. The vesicles were character-ized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and 1H NMR techniques. We suggest that the formation of an inclusion complex between some of the cyclodextrins units and the long hydrocarbon moiety of the cationic surfactant play a crucial role in the vesicles formation. Besides, some or the cavities are available to interact with an external guest. We think that the new surfactant molecule has properties that may lead to important applications in biomedical and pharmaceutical sciences.

3.
RSC Adv ; 8(52): 29909-29916, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-35547321

ABSTRACT

Niosomes were prepared from equimolar mixtures of two non-ionic surfactants, Span 80 and Tween 80. The capability of the vesicular systems was studied through the encapsulation of two azo dyes as molecular probes of different hydrophobicity (methyl orange (MO) and methyl yellow (MY)). To improve the efficiency of the niosomes to encapsulate the dyes, we employed an additional modification of the vesicular system, adding ß-cyclodextrin (ß-CD) or a modified amphiphilic ß-CD (Mod-ß-CD) to the niosomes. Neither the inclusion of dyes nor the incorporation of ß-CD to the niosomes produces considerable modifications in size and morphology of the vesicles. However, in the presence of Mod-ß-CD the niosomes became smaller, probably due to the anchoring of the cyclodextrin at the surface of vesicles through the hydrophobic chain, altering the curvature of the outer monolayer and reducing the surface charge of the interphase. The entrapment efficiency (EE) for MY was higher than that for MO in niosomes without cyclodextrin, however, the content of MO in the presence of ß-CD increased considerably. Besides, the release of this dye under the same conditions was faster and reached 70% in 24 hours whereas in the absence of the macrocycle, the release was 15%, in the same time. UV-visible spectrophotometry and induced circular dichroism analysis allowed it to be established that MO is complexed with cyclodextrins inside vesicles, whereas MY interacts mainly with the niosome bilayer instead of with CD. Besides, the cavity of cyclodextrins is probably located in the interphase and preferably in the polar region of niosomes.

4.
Langmuir ; 30(12): 3354-62, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24597759

ABSTRACT

In this contribution we show the effect of the surfactant polar head and the external solvent on the incorporation of different cyclodextrins (CDs) {α-CD, ß-CD, γ-CD, decenylsuccinyl-ß-CD (Mod-ß-CD), and hydroxypropyl-ß-CD (hp-ß-CD)} in different reverse micelles (RMs) {benzene/sodium 1,4-bis(2-ethylhexyl) sulfosuccinate(AOT)/water, and benzene/benzyl-n-hexadecyldimethylammonium chloride (BHDC)/water} and compare them with previous results obtained in n-heptane/AOT/water RMs. To investigate the different systems, we have used UV-vis spectrophotometry, induced circular dichroism spectroscopy (ICD), and the achiral molecular probe methyl orange (MO). The results show dramatic differences changing the external solvent and the surfactant, which are explained by considering the differences in the RMs interface composition, the water-surfactant interaction, and the CDs' location in the different media investigated. None of the CDs were incorporated into the benzene/AOT/water RMs at any [H2O]/[surfactant] ratio studied (W0) whereas it was previously shown that Mod-ß-CD and hp-ß-CD could be included in n-heptane/AOT/water RMs. However, all of the CDs are incorporated in benzene/BHDC/water RMs at W0 > 10 and hp-ß-CD is dissolved even at W0 = 0. Different from what was found in n-heptane/AOT RMs, in BHDC RMs MO showed ICD signals with two different CDs: Mod-ß-CD and hp-ß-CD. The results are explained by considering the known difference in the interfacial water structure for AOT and BHDC RMs and the electron-rich region on the secondary hydroxyl (wider side of the CDs), which helps to solubilize all CDs in BHDC. This study shows that chiral cyclodextrin could be available for a guest in an organic medium such as the RMs. Therefore we have created a potentially powerful nanoreactor with two different confined regions in the same aggregate: the polar core of the RMs and the chiral hydrophobic cavity of cyclodextrin.

5.
Chemphyschem ; 13(1): 124-30, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22095797

ABSTRACT

We found that the absorption spectra of 2-acetylphenol (2-HAP), 4-acetylphenol (4-HAP), and p-nitrophenol (p-NPh) in water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane reverse micelles (RMs) at various W(0) (W(0) = [H(2)O]/[surfactant]) values studied changed with time if (-)OH ions were present in the RM water pool. There is an evolution of ionized phenol (phenolate) bands to nonionized phenol absorption bands with time and this process is faster at low W(0) values and with phenols with higher bulk water pK(a) values. That is, in bulk water and at the hydroxide anion concentration used, only phenolate species are observed, whereas in AOT RMs at this fixed hydroxide anion concentration, ionized phenols convert into nonionized phenol species over time. Furthermore, we demonstrate that, independent of the (-)OH concentration used to prepare the AOT RMs, the nonionized phenols are the more stable species in the RM media. We explain our results by considering that strong hydrogen-bonding interactions between phenols and the AOT polar head groups result in the existence of only nonionized phenols at the AOT RM interface. The situation is quite different when the phenols are dissolved in cationic benzyl-n-hexadecyldimethylammonium chloride RMs. Therein, only phenolates species are present at the (-)OH concentrations used. The results clearly demonstrate that the classical definition of pH does not apply in a confined environment, such as in the interior of RMs and challenge the general idea that pH can be determined inside RMs.


Subject(s)
Micelles , Phenol/chemistry , Dioctyl Sulfosuccinic Acid/chemistry , Heptanes/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydroxides/chemistry , Ions/chemistry , Nanotechnology , Nitrophenols/chemistry , Water/chemistry
6.
Langmuir ; 24(15): 7867-74, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18582128

ABSTRACT

The surface behavior of monoacylated beta-cyclodextrins, with hydrocarbon chains of 16, 14, and 10 carbons, has been assessed by the measurement of the surface pressure, surface (dipole) potential, optical reflectivity, and surface topography in monolayers at the air-water interface. For all the derivatives studied, the intermolecular organization adopted along compression-decompression isotherms reveals a rich variety of packing states which imply profound reorganization of the hydrophobic and hydrophilic moieties of the beta-cyclodextrin derivatives in the film, depending on the lateral surface pressure. The intermolecular arrangements are consistent with the adoption of a different and defined orientation of the cyclic oligosaccharide unit, relative to the interfacial plane and the aqueous subphase. This is different from the behavior of the per-substituted derivatives, and none of the changes exhibited by the monosubstituted forms are consistent with the oligosaccharide ring remaining in a fixed orientation along the interface when the surface pressure is varied.


Subject(s)
Acrylates/chemistry , Air , Water/chemistry , beta-Cyclodextrins/chemistry , Hydrocarbons/chemistry , Microscopy, Electron , Models, Molecular , Molecular Structure , Pressure , Surface Properties
7.
Langmuir ; 24(8): 3718-26, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18341360

ABSTRACT

A cyclodextrin derivative (Mod-CD) was synthesized through the monoesterification of beta-cyclodextrin (beta-CD) with 3-((E)-dec-2-enyl)-dihydrofuran-2,5-dione. The compound is an interesting surfactant that can form large aggregates not only through the interaction of the hydrophobic tails as in common amphiphilic compounds but also through the inclusion of the alkenyl chain into the cavity of another Mod-CD molecule. The self-inclusion of the chain in the cavity of cyclodextrin as well as the intermolecular inclusion was demonstrated by 1H NMR measurements that were able to detect methyl groups in three different environments. Besides, in the aggregates of Mod-CD, the cavity is available to interact with external guests such as phenolphthalein, 1-amino adamantane, and Prodan. Phenolphthalein has the same binding constant with Mod-CD and beta-CD, but the equilibrium constant for the interaction with Prodan is about 2 times larger for Mod-CD than for beta-CD. The latter result is attributed to the fact that this probe interacts with the micelle in two binding sites: the cavity of the cyclodextrin and the apolar heart of the micelle as evidenced by the spectrofluorimetric behavior of Prodan in solutions containing different concentrations of Mod-CD.


Subject(s)
Cyclodextrins/chemistry , Cyclodextrins/chemical synthesis , Hydrophobic and Hydrophilic Interactions , Micelles , Water/chemistry , Light , Magnetic Resonance Spectroscopy , Molecular Structure , Phenolphthalein/chemistry , Spectrometry, Fluorescence
8.
J Phys Chem B ; 111(36): 10703-12, 2007 Sep 13.
Article in English | MEDLINE | ID: mdl-17705421

ABSTRACT

The formation of reverse micelles (RMs) of sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) in n-heptane including two different beta-cyclodextrin (beta-CD) derivatives (hydroxypropyl-beta-CD, hp-beta-CD, and decenyl succinyl-beta-CD, Mod-beta-CD) is reported. Both cyclodextrins can be incorporated into AOT RMs in different zones within the aggregate, while beta-CD cannot. Using UV-vis and induced circular dichroism (ICD) spectroscopy and different achiral molecular probes (some azo dyes, p-nitroaniline and ferrocene), it was possible to determine that Mod-beta-CD is located with its cavity at the oil side of the AOT RM interface, while for hp-beta-CD the cavity is inside the RM water pool. Among the molecular probes used, methyl orange (MO) was the only one which gave the ICD signal when dissolved in the AOT RMs with hp-beta-CD, so a detailed study of MO behavior in homogeneous media was also performed to compare with the microheterogeneous media. The solvatochromic behavior of the dye depends not only on the polarity of the media but also on other specific solvent properties. A Kamlet-Taft analysis shows that the MO absorption spectrum shifts to longer wavelength with an increase in the solvent polarity-polarizability (pi*) and the hydrogen donor ability (alpha) of the medium. MO appears to be almost 3 times more sensitive to the pi* parameter than to the alpha parameter. In addition, from the MO absorption spectral changes with the hp-beta-CD concentration, the association equilibrium constants in pure water (K11W) and inside the RMs (K11RM) were computed. The results show that K11W is almost 10 times larger than the value inside the RMs. The latter can be explained considering that MO resides anchored to the RM interface through hydrogen bond interaction with the hydration bound water. This study shows for the first time that the cyclodextrin chiral cavity is available for a guest in an organic medium such as the RMs; therefore, we have created a potentially powerful nanoreactor with two different confined regions in the same aggregate: the polar core of the RMs and the chiral hydrophobic cavity of cyclodextrin.

SELECTION OF CITATIONS
SEARCH DETAIL
...