Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 9(2): e90369, 2014.
Article in English | MEDLINE | ID: mdl-24587341

ABSTRACT

Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic 'seed' covered by a lipid-rich 'pulp'), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits to better understand the ecology of ant-fruit interactions in variable ecological settings, including human-disturbed landscapes.


Subject(s)
Ants/physiology , Biomimetics , Conservation of Natural Resources , Fruit , Rain , Trees/physiology , Animals , Atlantic Ocean , Brazil
2.
Neotrop Entomol ; 40(5): 542-7, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22068939

ABSTRACT

The search for factors shaping leaf-litter ant communities has received particular attention due to the essential role of these insects in many ecological processes. Here, we aimed to investigate how the number of leaves and leaf morphotypes affect the litter-ant species density at forest edge and interior in an Atlantic Forest remnant in the state of Alagoas, Brazil. This study was developed based on 28 litter plots (1m² each), 14 in the forest interior and 14 in the forest edge. As we early expected, ant species density increased with increasing both the number of leaves and the number of leaf morphotypes, but this result was clearly influenced by plot location. Contrasting with the forest interior, ant species density did not increase as the number of leaves increased in the forest edge. Possibly, factors such as plant species richness, vegetation structure and environmental conditions affect ant species density as well as promote a patchy distribution of species in ant communities along the edge-to-interior gradient. Our findings suggest that edge-affected forests present more simplified ant communities, with different factors shaping its structure. We encourage future studies to include leaf litter heterogeneity as one of the explanatory variables investigated.


Subject(s)
Ants , Ecosystem , Plant Leaves , Animals , Ants/classification , Brazil , Soil
3.
Oecologia ; 162(1): 103-15, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19690891

ABSTRACT

Leaf-cutting ants (Atta spp.) have become a topical issue in Neotropical ecology, particularly because they are reaching hyper-abundance due to escalating levels of fragmentation in recent years. Yet, despite intensive research on their role as dominant herbivores, there is still insufficient documentation on the impacts of their large, long-lived nests on plant assemblage structure and ecosystem functioning. Our study aimed at investigating the magnitude, nature, and spatial extent of nest influence by assessing 11 attributes of ant nest, canopy structure, light environment and sapling assemblage for 20 colonies in four plots along nest-understorey gradients in a large remnant of Atlantic forest. We also monitored the performance of seeds and seedlings of Chrysophyllum viride, an abundant shade-tolerant species. Previously unrecognized canopy gaps above ant nests (0.04-87.9 m(2)) occurred in 95% of all colonies surveyed. Overall, canopy openness and light availability at least doubled in ant nest plots compared with distant understorey plots. These drastic changes in the light environment paralleled those in plant assemblage: sapling density almost tripled (mean +/- SE: 0.42 +/- 0.1 saplings m(-2)) and sapling species richness doubled (0.16 +/- 0.02 species m(-2)) in distant plots, as did shade-tolerant species. After a 1-year period, only 33 +/- 15.6% of the seeds germinated and all seedlings died on nests, whereas seed germination reached 68 +/- 5.1% in distant plots and 66.4 +/- 7.6% of their seedlings survived after 12 months. Therefore, plot location was the most significant explanatory variable for predictable and conspicuous changes in the light environment and structure of sapling assemblages. Our findings greatly extend knowledge on the role played by leaf-cutting ants as ecosystem engineers by demonstrating that ant nest-mediated disturbance promotes environmental modifications in tens of meters around nests and is thus, strong enough to drive plant recruitment and consequently alter both the floristic and functional signature of plant assemblages.


Subject(s)
Ants/physiology , Nesting Behavior , Sapotaceae/physiology , Trees , Animals , Behavior, Animal , Ecosystem , Linear Models
SELECTION OF CITATIONS
SEARCH DETAIL