Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37623560

ABSTRACT

The production of fuels and other industrial products from renewable sources has intensified the search for new substrates or for the expansion of the use of substrates already in use, as well as the search for microorganisms with different metabolic capacities. In the present work, we isolated and tested a yeast from the soil of sugarcane irrigated with vinasse, that is, with high mineral content and acidic pH. The strain of Meyerozyma caribbica URM 8365 was able to ferment glucose, but the use of xylose occurred when some oxygenation was provided. However, some fermentation of xylose to ethanol in oxygen limitation also occurs if glucose was present. This strain was able to produce ethanol from molasses substrate with 76% efficiency, showing its tolerance to possible inhibitors. High ethanol production efficiencies were also observed in acidic hydrolysates of each bagasse, sorghum, and cactus pear biomass. Mixtures of these substrates were tested and the best composition was found for the use of excess plant biomass in supplementation of primary substrates. It was also possible to verify the production of xylitol from xylose when the acetic acid concentration is reduced. Finally, the proposed metabolic model allowed calculating how much of the xylose carbon can be directed to the production of ethanol and/or xylitol in the presence of glucose. With this, it is possible to design an industrial plant that combines the production of ethanol and/or xylitol using combinations of primary substrates with hydrolysates of their biomass.

2.
Lett Appl Microbiol ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142415

ABSTRACT

The excess of minerals in the industrial substrates is detrimental for Saccharomyces cerevisiae ethanol fermentation performance. In this work, we sought to understand the effect of some of those minerals on the physiology of Dekkera bruxellensis. Three groups of minerals were classified on the basis of the aerobic growth profiles on glucose: neutrals (K+, Mg2+, P5+ and Zn2+), inducers (Mn2+ and Ca2+) and inhibitors (Al3+, Cu2+ and Fe2+). Cu2+ showed the highest mineral toxicity, and its effect was dependent of the level of medium aeration. On the other hand, copper stimulated respiration by increasing growth on respiratory carbon sources. Most growth inhibitors also hampered glucose fermentation, with changes in carbon distribution to metabolic routes dedicated to anabolic reactions and for alternative reduced co-factors oxidations to maintain cellular homeostasis. The negative effect of Cu2+ on yeast fermentation was partially alleviated by Mg2+ and Mn2+, similar to magnesium antagonism observed for S. cerevisiae. All these results might contribute to understand the action of these minerals in sugarcane substrates on the physiology of D. bruxellensis cells. Therefore, it represents one more step for the consolidation of the industrial use of this yeast in the production of fuel-ethanol as well as other biotechnological goods.

3.
Metallomics ; 8(11): 1193-1203, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27714092

ABSTRACT

In a recent work we showed that magnesium (MgII) plays an important role in industrial ethanol production, overcoming the negative effect of the excess of minerals, particularly copper, present in sugarcane juice, with a consequent increase in ethanol yield. This cation has been reported to be involved in several steps of yeast metabolism, acting mainly as a co-factor of several enzymes of fermentation metabolism and protecting yeast cells from stressful conditions. However, despite many physiological investigations, its effect in the molecular mechanisms that control such metabolic activities remains unclear and to date no information concerning its influence on gene expression has been provided. The present work took advantage of the DNA microarray technology to analyse the global gene expression in yeast cells upon fermentation in MgII-supplemented medium. The results of the fermentation parameters confirmed the previous report on the increase in ethanol yield by MgII. Moreover, the gene expression data revealed an unexpected set of up-regulated genes currently assigned as being negatively-regulated by glucose, which belong to respiratory and energy metabolism, the stress response and the glyoxalate cycle. On the other hand, genes involved in ribosome biogenesis were down-regulated. Computational analysis provided evidence for a regulatory network commanded by key transcriptional factors that may be responsible for the biological action of MgII in yeast cells. In this scenario, MgII seems to act by reprogramming the yeast metabolism by releasing many genes from glucose catabolite repression with positive consequences for ethanol production and maintenance of cell viability.


Subject(s)
Catabolite Repression/drug effects , Gene Expression Regulation, Fungal/drug effects , Glucose/metabolism , Magnesium/pharmacology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Energy Metabolism/drug effects , Ethanol/metabolism , Fermentation/drug effects , Gene Regulatory Networks , Glucose/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...