Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 30(11): 1273-82, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27173109

ABSTRACT

RATIONALE: A broad range of organic species in marine sediments is routinely used as biogeochemical proxies of Earth history. These species are typically analyzed using different analytical methods, targeting very specific components and often including time-intensive sample preparation. There is, therefore, a need for a more comprehensive, rapid and high-throughput approach to simultaneously analyze a broad range of known sedimentary polar species and also have a surveillance capability able to identify candidate new species classes. METHODS: Whole solvent extracts from recently deposited Gulf of Mexico marine sediments were obtained after a simple, one-step extraction. They were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), using atmospheric pressure photoionization in positive ion mode (APPI-P), over a broad mass range (m/z 150-1500). RESULTS: From 3000 to over 5000 peaks per sample were assigned molecular formulae, and the majority of assignments (90%) showed an absolute error lower than 200 ppb. The detected species belong to the NO1-7 , N4 O2-8 , O1-9 , HC, N and OS compound classes, including known biomarker species such as pigments (e.g. tetrapyrrole macrocycles and carotenoids) and lipids (e.g. glycerol dialkyl glycerol tetraethers, GDGTs), but also compounds of still unknown detailed molecular structure, but with clear potential geochemical relevance. CONCLUSIONS: The reported method enables rapid (12 min FTICR-MS analysis time) and simultaneous detection of a broad range of multi-heteroatom, polar organic species in whole sediment extracts. This allows for higher sample throughput, a more comprehensive investigation of sedimentary geochemistry, and potentially the discovery of new components and derivation of novel, multi-species proxies. Copyright © 2016 John Wiley & Sons, Ltd.

2.
Anal Chem ; 88(2): 1128-37, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26641541

ABSTRACT

Many of the molecular proxies commonly used for paleoenvironmental reconstruction are focused on a limited set of glycerol ether lipids, mainly due to the lack of more comprehensive analytical methods and instrumentation able to deal with a more diverse range of species. In this study, we describe an FTICR-MS-based method for rapid, nontargeted screening of ether lipid biomarkers in recent marine sediments. This method involves simplified sample preparation and enables rapid identification of known and novel ether lipid species. Using this method, we were able to identify complete series of core glycerol dialkyl glycerol tetraethers (GDGTs with 0 to 8 alicyclic rings), including the complete resolution of GDGT-4 and the unexpected detection of GDGTs with more than 5 rings, in sediments from mesophilic marine environments (sea surface temperature, SST, of 24-25 °C). Additionally, mono- and dihydroxy-GDGT analogs (including novel species with >2 rings), as well as glycerol dialkanol diethers, GDDs (including novel species with >5 rings) were detected. Finally, we putatively identified other, previously unreported groups of glycerol ether lipid species. Adequacy of the APPI-P FTICR-MS data for the determination of commonly used GDGT-based proxy indices was demonstrated. The results of this study show great potential for the use of FTICR-MS as both a rapid method for determining existing proxy indices and, perhaps more importantly, as a tool for the early detection of possible new biomarkers and proxies that may establish novel geochemical relationships between archaeal ether lipids and key environmental-, energy-, and climate-related system variables.


Subject(s)
Atmospheric Pressure , Ethers/analysis , Fourier Analysis , Geologic Sediments/chemistry , Glycerol/analysis , Lipids/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Biomarkers/analysis , Cyclotrons , Photochemical Processes
3.
Magn Reson Chem ; 50(2): 85-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22337691

ABSTRACT

Low-field (1) H NMR was used in this work for the analysis of mixtures involving crude oils and water. CPMG experiments were performed to determine the transverse relaxation time (T2 ) distribution curves, which were computed by the inverse Laplace transform of the echo decay data. The instrument's ability of quantifying water and petroleum in biphasic mixtures following different methodologies was tested. For mixtures between deionized water and petroleum, one achieved excellent results, with root mean squared error of cross-validation (RMSECV) of 0.8% for a regression between the water content (wt %) and the relative area of the water peak in the T2 distribution curve, or a standard deviation of 0.9% for the relationship between the water content and the relative water peak area, corrected by the relative hydrogen index of the crude. In the case of biphasic mixtures of Mn(2+) -doped water and crude oils, the best result of RMSECV = 1.6% was achieved by using the raw magnetization decay data for a partial least squares regression.

4.
Magn Reson Chem ; 46(3): 268-73, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18236435

ABSTRACT

The (2,3)J(CH) dependence on dihedral angle (theta H--C--C--X) for cyclopentane derivatives was investigated. We observed that the combined use of experimentally obtained (2,3)J(CH) values and the theoretically determined dihedral angles between the corresponding nuclei can be used to infer the relative stereochemistry of the ring substituents in cyclopentane derivatives. There is a good correlation between the magnitude of (3)J(CH) and the dihedral angle between the hydrogen and the coupled carbon (R2 = 0.88).


Subject(s)
Carbon/chemistry , Cyclopentanes/chemistry , Hydrogen/chemistry , Magnetic Resonance Spectroscopy/standards , Computer Simulation , Magnetic Resonance Spectroscopy/methods , Molecular Conformation , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...