Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Prep Biochem Biotechnol ; 46(3): 298-304, 2016.
Article in English | MEDLINE | ID: mdl-25830777

ABSTRACT

Peptidases are important because they play a central role in pharmaceutical, food, environmental, and other industrial processes. A serine peptidase from Aspergillus terreus was isolated after two chromatography steps that showed a yield of 15.5%. Its molecular mass was determined to be 43 kD, by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This peptidase was active between pH 5.0 to 8.0 and had maximum activity at pH 7.0, at 45°C. When exposited with 1 M of urea, the enzyme maintained 100% activity and used azocasein as substrate. The N-terminal (first 15 residues) showed 33% identity with the serine peptidase of Aspergillus clavatus ES1. The kinetics assays showed that subsite S2 did not bind polar basic amino acids (His and Arg) nonpolar acidic amino acids (Asp and Glu). The subsite S1 showed higher catalytic efficiency than the S2 and S3 subsites.


Subject(s)
Aspergillus/enzymology , Serine Proteases/isolation & purification , Amino Acid Sequence , Chromatography, Gel , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Fermentation , Hydrogen-Ion Concentration , Kinetics , Serine Proteases/chemistry , Serine Proteases/metabolism , Temperature
2.
Braz. j. microbiol ; 44(1): 235-243, 2013. ilus, tab
Article in English | LILACS | ID: lil-676919

ABSTRACT

Enzyme production varies in different fermentation systems. Enzyme expression in different fermentation systems yields important information for improving our understanding of enzymatic production induction. Comparative studies between solid-state fermentation (SSF) using agro-industrial waste wheat bran and submerged fermentation (SmF) using synthetic media were carried out to determinate the best parameters for peptidase production by the fungus Aspergillus fumigatus Fresen. Variables tested include: the concentration of carbon and protein nitrogen sources, the size of the inoculum, the pH of the media, temperature, and the length of the fermentation process. The best peptidase production during SSF was obtained after 96 hours using wheat bran at 30 ºC with an inoculum of 1 x 10(6) spores and yielded 1500 active units (UµmL). The best peptidase production using SmF was obtained after periods of 72 and 96 hours of fermentation in media containing 0.5% and 0.25% of casein, respectively, at a pH of 6.0 and at 30 ºC and yielded 40 UµmL. We also found examples of catabolite repression of peptidase production under SmF conditions. Biochemical characterization of the peptidases produced by both fermentative processes showed optimum activity at pH 8.0 and 50 ºC, and also showed that their proteolytic activity is modulated by surfactants. The enzymatic inhibition profile using phenylmethylsulfonyl fluoride (PMSF) in SmF and SSF indicated that both fermentative processes produced a serine peptidase. Additionally, the inhibitory effect of the ethylene-diaminetetraacetic acid (EDTA) chelating agent on the peptidase produced by SmF indicated that this fermentative process also produced a metallopeptidase.


Subject(s)
Aspergillus fumigatus/enzymology , Aspergillus fumigatus/isolation & purification , Azotobacter/enzymology , Azotobacter/isolation & purification , Fermentation , Metalloexopeptidases/analysis , Metalloexopeptidases/isolation & purification , Peptide Hydrolases/analysis , Serine/analysis , Enzyme Activation , Methods , Reference Standards , Methods
SELECTION OF CITATIONS
SEARCH DETAIL
...