Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10922, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740789

ABSTRACT

Melatonin receptors MT1 and MT2 are G protein-coupled receptors that mediate the effects of melatonin, a hormone involved in circadian rhythms and other physiological functions. Understanding the molecular interactions between these receptors and their ligands is crucial for developing novel therapeutic agents. In this study, we used molecular docking, molecular dynamics simulations, and quantum mechanics calculation to investigate the binding modes and affinities of three ligands: melatonin (MLT), ramelteon (RMT), and 2-phenylmelatonin (2-PMT) with both receptors. Based on the results, we identified key amino acids that contributed to the receptor-ligand interactions, such as Gln181/194, Phe179/192, and Asn162/175, which are conserved in both receptors. Additionally, we described new meaningful interactions with Gly108/Gly121, Val111/Val124, and Val191/Val204. Our results provide insights into receptor-ligand recognition's structural and energetic determinants and suggest potential strategies for designing more optimized molecules. This study enhances our understanding of receptor-ligand interactions and offers implications for future drug development.


Subject(s)
Melatonin , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Receptor, Melatonin, MT1 , Receptor, Melatonin, MT2 , Melatonin/metabolism , Melatonin/chemistry , Receptor, Melatonin, MT2/metabolism , Receptor, Melatonin, MT2/chemistry , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT1/chemistry , Humans , Ligands , Quantum Theory , Binding Sites , Indenes/chemistry , Indenes/metabolism
2.
Curr Res Microb Sci ; 6: 100238, 2024.
Article in English | MEDLINE | ID: mdl-38745914

ABSTRACT

Oropouche virus (OROV) is a member of the Peribunyaviridae family and the causative agent of a dengue-like febrile illness transmitted by mosquitoes. Although mild symptoms generally occur, complications such as encephalitis and meningitis may develop. A lack of proper diagnosis, makes it a potential candidate for new epidemics and outbreaks like other known arboviruses such as Dengue, Yellow Fever and Zika virus. The study of natural molecules as potential antiviral compounds is a promising alternative for antiviral therapies. Wedelolactone (WDL) has been demonstrated to inhibit some viral proteins and virus replication, making it useful to target a wide range of viruses. In this study, we report the in silico effects of WDL on the OROV N-terminal polymerase and its potential inhibitory effects on several steps of viral infection in mammalian cells in vitro, which revealed that WDL indeed acts as a potential inhibitor molecule against OROV infection.

3.
Curr Res Microb Sci ; 6: 100217, 2024.
Article in English | MEDLINE | ID: mdl-38234431

ABSTRACT

Oropouche virus (OROV) is an emerging vector-borne arbovirus found in South America that causes Oropouche fever, a febrile infection similar to dengue fever. It has a high epidemic potential, causing illness in over 500,000 cases diagnosed since the virus was first discovered in 1955. Currently, the prevention of human viral infection depends on vaccination, but availability for many viruses is limited, and they are classified as neglected viruses. At present, there are no vaccines or antiviral treatments available. An alternative approach to limiting the spread of the virus is to selectively disrupt viral replication mechanisms. Here, we demonstrate the inhibitory effect of acridones, which efficiently inhibited viral replication by 99.9 % in vitro. To evaluate possible mechanisms of action, we conducted tests with dsRNA, an intermediate in virus replication, as well as MD simulations, docking, and binding free energy analysis. The results showed a strong interaction between FAC21 and the OROV endonuclease, which possibly limits the interaction of viral RNA with other proteins. Therefore, our results suggest a dual mechanism of antiviral action, possibly caused by ds-RNA intercalation. In summary, our findings demonstrate that a new generation of antiviral drugs could be developed based on the selective optimization of molecules.

4.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38258414

ABSTRACT

Ebola virus disease (EVD) causes outbreaks and epidemics in West Africa that persist until today. The envelope glycoprotein of Ebola virus (GP) consists of two subunits, GP1 and GP2, and plays a key role in anchoring or fusing the virus to the host cell in its active form on the virion surface. Toremifene (TOR) is a ligand that mainly acts as an estrogen receptor antagonist; however, a recent study showed a strong and efficient interaction with GP. In this context, we aimed to evaluate the energetic affinity features involved in the interaction between GP and toremifene by computer simulation techniques using the Molecular Fractionation Method with Conjugate Caps (MFCC) scheme and quantum-mechanical (QM) calculations, as well as missense mutations to assess protein stability. We identified ASP522, GLU100, TYR517, THR519, LEU186, LEU515 as the most attractive residues in the EBOV glycoprotein structure that form the binding pocket. We divided toremifene into three regions and evaluated that region i was more important than region iii and region ii for the formation of the TOR-GP1/GP2 complex, which might control the molecular remodeling process of TOR. The mutations that caused more destabilization were ARG134, LEU515, TYR517 and ARG559, while those that caused stabilization were GLU523 and ASP522. TYR517 is a critical residue for the binding of TOR, and is highly conserved among EBOV species. Our results may help to elucidate the mechanism of drug action on the GP protein of the Ebola virus and subsequently develop new pharmacological approaches against EVD.Communicated by Ramaswamy H. Sarma.

5.
Pharmaceutics ; 15(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38140109

ABSTRACT

The Oropouche virus (OROV) is a member of the family Peribunyaviridae (order Bunyavirales) and the cause of a dengue-like febrile illness transmitted mainly by biting midges and mosquitoes. In this study, we aimed to explore acylphloroglucinols and xanthohumol from hops (Humulus lupulus L.) as a promising alternative for antiviral therapies. The evaluation of the inhibitory potential of hops compounds on the viral cycle of OROV was performed through two complementary approaches. The first approach applies cell-based assay post-inoculation experiments to explore the inhibitory potential on the latest steps of the viral cycle, such as genome translation, replication, virion assembly, and virion release from the cells. The second part covers in silico methods evaluating the ability of those compounds to inhibit the activity of the endonuclease domain, which is essential for transcription, binding, and cleaving RNA. In conclusion, the beta acids showed strongest inhibitory potential in post-treatment assay (EC50 = 26.7 µg/mL). Xanthohumol had the highest affinity for OROV endonuclease followed by colupulone and cohumulone. This result contrasts with that observed for docking and MM/PBSA analysis, where cohumulone was found to have a higher affinity. Finally, among the three tested ligands, Lys92 and Arg33 exhibited the highest affinity with the protein.

6.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108665

ABSTRACT

Zika virus (ZIKV) has re-emerged in recent decades, leading to outbreaks of Zika fever in Africa, Asia, and Central and South America. Despite its drastic re-emergence and clinical impact, no vaccines or antiviral compounds are available to prevent or control ZIKV infection. This study evaluated the potential antiviral activity of quercetin hydrate against ZIKV infection and demonstrated that this substance inhibits virus particle production in A549 and Vero cells under different treatment conditions. In vitro antiviral activity was long-lasting (still observed 72 h post-infection), suggesting that quercetin hydrate affects multiple rounds of ZIKV replication. Molecular docking indicates that quercetin hydrate can efficiently interact with the specific allosteric binding site cavity of the NS2B-NS3 proteases and NS1-dimer. These results identify quercetin as a potential compound to combat ZIKV infection in vitro.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , Antiviral Agents/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Vero Cells , Molecular Docking Simulation , Virus Replication
7.
Viruses ; 15(2)2023 02 10.
Article in English | MEDLINE | ID: mdl-36851709

ABSTRACT

Ilhéus virus (ILHV) is a neglected mosquito-borne flavivirus. ILHV infection may lead to Ilhéus fever, an emerging febrile disease like dengue fever with the potential to evolve into a severe neurological disease characterized by meningoencephalitis; no specific treatments are available for this disease. This study assessed the antiviral properties of caffeic acid, an abundant component of plant-based food products that is also compatible with the socioeconomic limitations associated with this neglected infectious disease. The in vitro activity of caffeic acid on ILHV replication was investigated in Vero and A549 cell lines using plaque assays, quantitative RT-PCR, and immunofluorescence assays. We observed that 500 µM caffeic acid was virucidal against ILHV. Molecular docking indicated that caffeic acid might interact with an allosteric binding site on the envelope protein.


Subject(s)
Antiviral Agents , Animals , Humans , Molecular Docking Simulation , A549 Cells , Allosteric Site , Antiviral Agents/pharmacology
8.
J Biomol Struct Dyn ; 41(7): 2981-2991, 2023 04.
Article in English | MEDLINE | ID: mdl-35188085

ABSTRACT

Diseases caused by viruses of the genus Flavivirus are among the main diseases that affect the world and they are a serious public health problem. Three of them stand out: Dengue, Yellow fever and Zika viruses. The non-structural protein 1 (NS1), encoded by this viral genus, in its dimeric form, plays important roles in the pathogenesis and RNA replication of these viruses. Therefore, the identification of chemicals with the potential to inhibit the formation of the NS1 protein dimer of DENV, YFV and ZIKV would enable them to act as a multi-target drug. For this, we selected conformations of the NS1 protein monomer with similar ß-roll domain structure among the three virus species from conformations obtained from molecular dynamics simulations performed in GROMACS in 5 replicates of 150 ns for each species. After selecting the protein structures, a virtual screening of compounds from the natural products catalog of the ZINC database was performed using AutoDock Vina. The 100 best compounds were classified according efficiency criteria. Two compounds were observed in common to the species, with energy scores ranging from -9.2 kcal/mol to -10.1 kcal/mol. The results obtained here demonstrate the high similarity of NS1 proteins in the Flavivirus genus and high affinity for the same compounds; thus justifying the potential of these small molecules act in multitarget therapy.Communicated by Ramaswamy H. Sarma.


Subject(s)
Dengue Virus , Zika Virus Infection , Zika Virus , Humans , Viral Nonstructural Proteins/chemistry
9.
Int J Mol Sci ; 23(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35887029

ABSTRACT

The mosquito-borne disease caused by the Rocio virus is a neglected threat, and new immune inputs for serological testing are urgently required for diagnosis in low-resource settings and epidemiological surveillance. We used in silico approaches to identify a specific antigenic peptide (p_ROCV2) in the NS1 protein of the Rocio virus that was theoretically predicted to be stable and exposed on its surface, where it demonstrated key properties allowing it to interact with antibodies. These findings related to the molecular dynamics of this peptide provide important insights for advancing diagnostic platforms and investigating therapeutic alternatives.


Subject(s)
Flavivirus , Molecular Dynamics Simulation , Animals , Immunologic Tests , Molecular Docking Simulation , Peptides , Viral Nonstructural Proteins/chemistry
10.
Microorganisms ; 10(4)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35456728

ABSTRACT

Mycobacterium bovis is the causative agent of tuberculosis in domestic and wild animal species and sometimes in humans, presenting variable degrees of pathogenicity. It is known that PknG is involved in the first steps of Mycobacterium tuberculosis macrophage infection and immune evasion. We questioned whether M. bovispknG genes were conserved among mycobacteria and if natural genetic modifications would affect its virulence. We discovered a single mutation at a catalytic domain (R242P) of one M. bovis isolate and established the relation between the presence of R242P mutation and enhanced M. bovis virulence. Here, we demonstrated that R242P mutation alters the PknG protein conformation to a more open ATP binding site cleft. It was observed that M. bovis with PknG mutation resulted in increased growth under stress conditions. In addition, infected macrophages by M. bovis (R242P) presented a higher bacterial load compared with M. bovis without the pknG mutation. Furthermore, using the mouse model of infection, animals infected with M. bovis (R242P) had a massive innate immune response migration to the lung that culminated with pneumonia, necrosis, and higher mortality. The PknG protein single point mutation in its catalytic domain did not reduce the bacterial fitness but rather increased its virulence.

11.
J Immunol Methods ; 504: 113246, 2022 05.
Article in English | MEDLINE | ID: mdl-35288195

ABSTRACT

The use of serological tests is valuable to diagnose Zika virus (ZIKV) infection and carry out epidemiological surveillance. However, ZIKV serological tests may result in false positives due to cross-reactivity between antibodies against other Flavivirus, especially dengue virus that worldwide disseminated. We used three online tools to predict amino acid sequences of B-cell epitopes. We selected and synthetized two epitopes that showed appropriate features in the molecular dynamic simulation and demonstrated to be suitable for serological assays.


Subject(s)
Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Antibodies, Viral , Cross Reactions , Epitopes, B-Lymphocyte , Humans , Serologic Tests
12.
Int Immunopharmacol ; 106: 108573, 2022 May.
Article in English | MEDLINE | ID: mdl-35183035

ABSTRACT

Human respiratory syncytial virus (hRSV) is an infectious agent in infants and young children which there are no vaccines or drugs for treatment. Neutrophils are recruited for airway, where they are stimulated by hRSV to release large amounts of neutrophil extracellular traps (NETs). NETs are compound by DNA and proteins, including microbicidal enzymes. They constitute a large part of the mucus accumulated in the lung of patients, compromising their breathing capacity. In contrast, NETs can capture/inactivate hRSV, but the molecules responsible for this effect are unknown. OBJECTIVES: We selected microbicidal NET enzymes (elastase, myeloperoxidase, cathepsin-G, and proteinase-3) to assess their anti-hRSV role. METHODS AND RESULTS: Through in vitro assays using HEp-2 cells, we observed that elastase, proteinase-3, and cathepsin-G, but not myeloperoxidase, showed virucidal effects even at non-cytotoxic concentrations. Elastase and proteinase-3, but not cathepsin-G, cleaved viral F-protein, which is responsible for viral adhesion and fusion with the target cells. Molecular docking analysis indicated the interaction of these macromolecules in the antigenic regions of F-protein through the active regions of the enzymes. CONCLUSIONS: Serine proteases from NETs interact and inactive hRSV. These results contribute to the understanding the role of NETs in hRSV infection and to designing treatment strategies for the inflammatory process during respiratory infections.


Subject(s)
Extracellular Traps , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Serine Proteases , Extracellular Traps/enzymology , Humans , Molecular Docking Simulation , Respiratory Syncytial Virus Infections/metabolism , Serine Proteases/metabolism
13.
J Biomol Struct Dyn ; 40(19): 9361-9373, 2022.
Article in English | MEDLINE | ID: mdl-34060981

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in Latin America, caused by fungi of the genus Paracoccidioides. The treatment of PCM is complex, requiring a long treatment period, which often results in serious side effects. The aim of this study was to screen for inhibitors of a specific target of the fungus that is absent in humans. Methylcitrate synthase (MCS) is a unique enzyme of microorganisms and is responsible for the synthesis of methylcitrate at the beginning of the propionate degradation pathway. This pathway is essential for several microorganisms, since the accumulation of propionyl-CoA can impair virulence and prevent the development of the pathogen. We performed the modeling and molecular dynamics of the structure of Paracoccidioides lutzii MCS (PlMCS) and performed a virtual screening on 89,415 compounds against the active site of the enzyme. The compounds were selected according to the affinity and efficiency criteria of in vitro tests. Six compounds were able to inhibit the enzymatic activity of recombinant PlMCS but only the compound ZINC08964784 showed fungistatic and fungicidal activity against Paracoccidioides spp. cells. The analysis of the interaction profile of this compound with PlMCS showed its effectiveness in terms of specificity and stability when compared to the substrate (propionyl-CoA) of the enzyme. In addition, this compound did not show cytotoxicity in mammalian cells, with an excellent selectivity index. Our results suggest that the compound ZINC08964784 may become a promising alternative antifungal against Paracoccidioides spp. Communicated by Ramaswamy H. Sarma.


Subject(s)
Paracoccidioides , Paracoccidioidomycosis , Humans , Animals , Paracoccidioidomycosis/drug therapy , Paracoccidioidomycosis/microbiology , Citrate (si)-Synthase/pharmacology , Mammals
14.
Viruses ; 13(11)2021 11 16.
Article in English | MEDLINE | ID: mdl-34835099

ABSTRACT

Rocio virus (ROCV) is a mosquito-borne flavivirus and human pathogen. The virus is indigenous to Brazil and was first detected in 1975 in the Sao Paulo State, and over a period of two years was responsible for several epidemics of meningoencephalitis in coastal communities leading to over 100 deaths. The vast majority of ROCV infections are believed to be subclinical and clinical manifestations can range from uncomplicated fever to fatal meningoencephalitis. Birds are the natural reservoir and amplification hosts and ROCV is maintained in nature in a mosquito-bird-mosquito transmission cycle, primarily involving Psorophora ferox mosquitoes. While ROCV has remained mostly undetected since 1976, in 2011 it re-emerged in Goiás State causing a limited outbreak. Control of ROCV outbreaks depends on sustainable vector control measures and public education. To date there is no specific treatment or licensed vaccine available. Here we provide an overview of the ecology, transmission cycles, epidemiology, pathogenesis, and treatment options, aiming to improve our ability to understand, predict, and ideally avert further ROCV emergence.


Subject(s)
Disease Outbreaks , Flavivirus Infections/virology , Flavivirus/genetics , Animals , Brazil/epidemiology , Flavivirus/classification , Flavivirus Infections/epidemiology , Flavivirus Infections/transmission , Humans , Mosquito Vectors/virology , Viral Proteins/genetics
15.
Article in English | MEDLINE | ID: mdl-33676005

ABSTRACT

We investigated the antiophidic properties of isohemigossypolone (ISO), a naphthoquinone isolated from the outer bark of the Pachira aquatic Aubl. The inhibition of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic activities induced by Bothrops pauloensis venom (Pb) was investigated. For this, we use samples resulting from the incubation of Pb with ISO in different concentrations (1:1, 1:5 and 1:10 w/w), we also evaluated the condition of treatment using ISO after 15 min of venom inoculation. The activities of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic induced by the B. pauloensis venom were significantly inhibited when the ISO was pre-incubated with the crude venom. For in vivo neutralization tests, the results were observed even when the ISO was applied after 15 min of inoculation of the venom or metalloprotease (BthMP). Also, to identify the inhibition mechanism, we performed in silico assays, across simulations of molecular coupling and molecular dynamics, it was possible to identify the modes of interaction between ISO and bothropic toxins BmooMPα-I, Jararacussin-I and BNSP-7. The present study shows that naphthoquinone isohemigossypolone isolated from the P. aquatica plant inhibited part of the local and systemic damage caused by venom proteins, demonstrating the pharmacological potential of this compound in neutralizing the harmful effects caused by snakebites.


Subject(s)
Bombacaceae/chemistry , Crotalid Venoms/antagonists & inhibitors , Naphthoquinones , Plant Extracts , Snake Bites/drug therapy , Animals , Male , Metalloproteases/metabolism , Mice , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Phospholipases A2/metabolism , Plant Bark/chemistry , Plant Extracts/pharmacology
16.
Sci Total Environ ; 761: 143276, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33162127

ABSTRACT

Brazil is an important player in the global agribusiness markets, in which grain and beef make up the majority of exports. Barriers to access more valuable sustainable markets emerge from the lack of adequate compliance in supply chains. Here is depicted a mobile application based on cloud/edge computing for the livestock supply chain to circumvent that limitation. The application, called BovChain, is a peer-to-peer (P2P) network connecting landowners and slaughterhouses. The objective of the application is twofold. Firstly, it maximizes sustainable business by reducing transaction costs and by strengthening ties between state-authorized stakeholders. Secondly, it creates metadata useful for digital certification by exploiting CMOS and GPS sensor technologies embedded in low-cost smartphones. Successful declarative transactions in the digital space are recorded as metadata, and the corresponding big data might be valuable for the certification of livestock origin and traceability for sustainability compliance in 'glocal' beef markets.

17.
J Biomol Struct Dyn ; 39(16): 5872-5891, 2021 10.
Article in English | MEDLINE | ID: mdl-32691671

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative, chronic, and progressive disease, common in the elderly. The catechol-O-methyltransferase (COMT) is a monomeric enzyme involved in dopamine (DA) degradation, the neurotransmitter in deficit in patients with PD. The reference treatment of PD consists of levodopa (L-dopa) administration, which is the precursor of DA. The inhibition of COMT is an adjuvant treatment in PD since it keeps DA levels constant. The goal of this study was to identify drug candidates capable of inhibiting COMT for the treatment of PD and identify important fragments of these molecules. Initially, we analyzed the flexibility of COMT and defined its main conformations in solution regarding the absence (system I) and presence of the S-adenosyl-L-methionine (SAM) cofactor (system II) through molecular dynamics (MD) simulations. Two regions in these structures were selected for molecular docking, firstly the entire cavity where the cofactor and substrates are bound and secondly the specific biding region of the enzyme substrates. Based on the conformations of the MD, the virtual screening (VS) was performed against FDA Approved and Zinc Natural Products databases aiming at the selection of the best compounds. Subsequently, the absorption, distribution, metabolization, excretion, and toxicity (ADMET) properties, as well as drug-score and drug-likeness indexes of the most promising compounds were analyzed. After a detailed analysis of the compounds selected by structure-based VS, it was possible to highlight the fragments most frequently involved in their stability: 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole, 9H-Benz(c)indole(3,2,1-ij)(1,5)naphthyridin-9-one and (10R,13S)-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17dodecahydrocyclopenta[a]phenanthren-3-one. The identification of these potential fragments is essential for the prospection of more specific inhibitors against COMT using the technique of Fragment-based lead discovery (FBLD). Besides, this study allowed us to identify the potential COMT inhibitors through a complete understanding of molecular-level interactions based on the flexibility of this protein.Communicated by Ramaswamy H. Sarma.


Subject(s)
Catechol O-Methyltransferase , Parkinson Disease , Aged , Catechol O-Methyltransferase Inhibitors , Enzyme Inhibitors , Humans , Levodopa , Molecular Docking Simulation , Molecular Dynamics Simulation , Parkinson Disease/drug therapy
18.
J Biomol Struct Dyn ; 39(15): 5657-5667, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32657643

ABSTRACT

Non-structural protein 1 (nsp1) is found in all Betacoronavirus genus, an important viral group that causes severe respiratory human diseases. This protein has significant role in pathogenesis and it is considered a probably major virulence factor. As it is absent in humans, it becomes an interesting target of study, especially when it comes to the rational search for drugs, since it increases the specificity of the target and reduces possible adverse effects that may be caused to the patient. Using approaches in silico we seek to study the behavior of nsp1 in solution to obtain its most stable conformation and find possible drugs with affinity to all of them. For this purpose, complete model of nsp1 of SARS-CoV-2 were predicted and its stability analyzed by molecular dynamics simulations in five different replicas. After main pocket validation using two control drugs and the main conformations of nsp1, molecular docking based on virtual screening were performed to identify novel potential inhibitors from DrugBank database. It has been found 16 molecules in common to all five nsp1 replica conformations. Three of them was ranked as the best compounds among them and showed better energy score than control molecules that have in vitro activity against nsp1 from SARS-CoV-2. The results pointed out here suggest new potential drugs for therapy to aid the rational drug search against COVID-19. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
19.
J Fungi (Basel) ; 6(4)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238437

ABSTRACT

BACKGROUND: Systemic mycosis is a cause of death of immunocompromised subjects. The treatment directed to evade fungal pathogens shows severe limitations, such as time of drug exposure and side effects. The paracoccidioidomycosis (PCM) treatment depends on the severity of the infection and may last from months to years. METHODS: To analyze the main interactions of Paracoccidioides lutzii isocitrate lyase (ICL) regarding the energetic metabolism through affinity chromatography, we performed blue native PAGE and co-immunoprecipitation to identify ICL interactions. We also performed in silico analysis by homology, docking, hot-spot prediction and contact preference analysis to identify the conformation of ICL complexes. RESULTS: ICL interacted with 18 proteins in mycelium, 19 in mycelium-to-yeast transition, and 70 in yeast cells. Thirty complexes were predicted through docking and contact preference analysis. ICL has seven main regions of interaction with protein partners. CONCLUSIONS: ICL seems to interfere with energetic metabolism of P. lutzii, regulating aerobic and anaerobic metabolism as it interacts with proteins from glycolysis, gluconeogenesis, TCA and methylcitrate cycles, mainly through seven hot-spot residues.

20.
ACS Biomater Sci Eng ; 6(8): 4523-4538, 2020 08 10.
Article in English | MEDLINE | ID: mdl-33455175

ABSTRACT

IR-780 iodide is a fluorescent dye with optical properties in the near-infrared region that has applications in tumor detection and photothermal/photodynamic therapy. This multifunctional effect led to the development of theranostic nanoparticles with both IR-780 and chemotherapeutic drugs such as docetaxel, doxorubicin, and lonidamine. In this work, we developed two albumin-based nanoparticles containing near-infrared IR-780 iodide multifunctional dyes, one of them possessing a magnetic core. Molecular docking with AutoDock Vina studies showed that IR-780 binds to bovine serum albumin (BSA) with greater stability at a higher temperature, allowing the protein binding pocket to better fit this dye. The theoretical analysis corroborates the experimental protocols, where an enhancement of IR-780 was found coupled to BSA at 60 °C, even 30 days after preparation, in comparison to 30 °C. In vitro assays monitoring the viability of Ehrlich ascites carcinoma cells revealed the importance of the inorganic magnetic core on the nanocarrier photothermal-cytotoxic effect. Fluorescence molecular tomography measurements of Ehrlich tumor-bearing Swiss mice revealed the biodistribution of the nanocarriers, with marked accumulation in the tumor tissue (≈3% ID). The histopathological analysis demonstrated strong increase in tumoral necrosis areas after 24 and 72 h after treatment, indicating tumor regression. Tumor regression analysis of nonirradiated animals indicate a IR-780 dose-dependent antitumoral effect with survival rates higher than 70% (animals monitored up to 600 days). Furthermore, an in vivo photothermal therapy procedure was performed and tumor regression was also verified. These results show a novel insight for the biomedical application of IR-780-albumin-based nanocarriers, namely cancer therapy, not only by photoinduced therapy but also by a nonirradiation mechanism. Safety studies (acute oral toxicity, cardiovascular evaluation, and histopathological analysis) suggest potential for clinical translation.


Subject(s)
Hyperthermia, Induced , Animals , Cell Line, Tumor , Indoles , Mice , Molecular Docking Simulation , Phototherapy , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...