Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37688248

ABSTRACT

This work aimed to study the effect of the incorporation of graphene nanoplatelets (GRA 0.5% and 1% (w/w)) on the matrices of biobased polymers composed of starch-based materials (B20) and poly(butylene succinate) (PBS) using pine rosin (RES) as a compatibilizer. Three formulations were produced (B20/RES/PBS, B20/RES/PBS/GRA0.5%, and B20/RES/PBS/GRA1%), and their mechanical properties (tensile, flexural, hardness, and impact), rheological behavior, thermal properties (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)), chemical analysis (Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy), and contact angle were evaluated. Hardness (Shore D), tensile, and flexural moduli increased, whereas elongation at break and toughness decreased as GRA content increased. FTIR studies strongly supported the existence of interactions between polymeric matrices and the large surface area of GRA. The viscosity flow curves were well fitted to the Cross-Williams-Landel-Ferry (Cross-WLF) model, and the three formulations exhibited non-Newtonian (shear-thinning) behavior. The analysis of water contact angles indicated that the formulation surfaces have hydrophilic behavior. All the samples are thermally stable, and the results of this study can be used to optimize the application of biobased graphene-based composites for applications in injection molding industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...