Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 41(8): 1516-1534.e9, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37541244

ABSTRACT

Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.


Subject(s)
Lung Neoplasms , Animals , Humans , Chromatin Assembly and Disassembly , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Chromatin , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/genetics , Mutation , Mammals/genetics , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
2.
Endocrinology ; 162(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-33724348

ABSTRACT

The mammary gland is a hormone sensitive organ that is susceptible to endocrine-disrupting chemicals (EDCs) during the vulnerable periods of parous reorganization (ie, pregnancy, lactation, and involution). Pregnancy is believed to have long-term protective effects against breast cancer development; however, it is unknown if EDCs can alter this effect. We examined the long-term effects of propylparaben, a common preservative used in personal care products and foods, with estrogenic properties, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 20, 100, or 10 000 µg/kg/day propylparaben throughout pregnancy and lactation. Unexposed nulliparous females were also evaluated. Five weeks post-involution, mammary glands were collected and assessed for changes in histomorphology, hormone receptor expression, immune cell number, and gene expression. For several parameters of mammary gland morphology, propylparaben reduced the effects of parity. Propylparaben also increased proliferation, but not stem cell number, and induced modest alterations to expression of ERα-mediated genes. Finally, propylparaben altered the effect of parity on the number of several immune cell types in the mammary gland. These results suggest that propylparaben, at levels relevant to human exposure, can interfere with the effects of parity on the mouse mammary gland and induce long-term alterations to mammary gland structure. Future studies should address if propylparaben exposures negate the protective effects of pregnancy on mammary cancer development.


Subject(s)
Lactation/drug effects , Mammary Glands, Animal/drug effects , Parabens/toxicity , Prenatal Exposure Delayed Effects , Animals , Cells, Cultured , Endocrine Disruptors/toxicity , Female , Male , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/pathology , Maternal Exposure/adverse effects , Mice , Mice, Inbred BALB C , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...