Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
PLoS One ; 18(4): e0283820, 2023.
Article in English | MEDLINE | ID: mdl-37053177

ABSTRACT

PURPOSE: The postural transition from sitting to standing is a moment of dysautonomic occurrence in individuals with Spinal Cord Injury (SCI). Different tools can be used to minimize this event, such as virtual reality. Thus, we aimed to analyze cardiac autonomic modulation in individuals with SCI during postural transition from the sitting to orthostatism position using a cognitive virtual reality (VR) task. METHODS: Individuals with and without SCI were positioned on the Easy Stand® device, sitting at rest, at 0° considering the angle between the seat and the floor, elevation at 45°, and orthostatism at 90°, for 5 minutes in each position. Heart rate variability (HRV) measures of sympathovagal balance were collected (heart rate receiver: Polar V800). The groups were subdivided into two groups, one that performed VR as an intervention during the postural angle changes and another group that did not perform VR. RESULTS: We evaluated 76 individuals, 40 with a medical diagnosis of SCI and 36 who composed the able-bodied control group without SCI, matched by age and sex. The HRV results showed that the SCI group who performed the task in VR demonstrated no significant difference in parasympathetic activation and global variability between the sitting versus 90° positions. There was better sympathovagal balance in SCI and able-bodied control groups who performed the VR task between the sitting versus 90° positions. CONCLUSION: The use of a VR task seems to contribute to better sympathovagal balance, with the potential to reduce dysautonomia during postural changes.


Subject(s)
Primary Dysautonomias , Spinal Cord Injuries , Humans , Cross-Sectional Studies , Autonomic Nervous System , Heart , Sitting Position , Postural Balance/physiology
2.
Braz. arch. biol. technol ; 63: e20180453, 2020. graf
Article in English | LILACS | ID: biblio-1132256

ABSTRACT

Abstract The aim of this study was to evaluate the effectiveness of 3 different fluences of low-level laser therapy (LLLT) in intermediate period of spinal cord repair using an experimental model in rats. Thirty two rats were randomly divided into four experimental groups: Control Group (CG); Laser treated group 500 J/cm² (L-500); Laser treated group 750 J/cm² (L-750) and Laser treated group 1000 J/cm² (L-1000). Spinal cord injury (SCI) was performed by an impactor equipment (between 9th and 10th thoracic vertebrae), with a pressure of 150 kdyn. Afterwards, the injured region was irradiated daily for 14 consecutive sessions, using an 808 nm laser, at the respective fluence of each experimental groups. Locomotor function and tactile sensitivity were performed on days 1 and 15 post-surgery. Animals were euthanized 15 days post-surgery and samples were retrieved for histological and immunohistochemistry analysis. Functional behavior and tactile sensitivity were improved after laser irradiation. Moreover, higher fluencies of LLLT reduced the volume of injury. Additionally, LLLT produced a decreased CD-68 expression. These results demonstrated that, for an intermediate period of SCI repair, LLLT at higher fluences, was effective in promoting functional recovery and modulating the inflammatory process in the spinal cord of rats after traumatic SCI.


Subject(s)
Animals , Female , Rats , Spinal Cord Injuries/therapy , Low-Level Light Therapy/methods , Neuronal Plasticity , Spinal Cord Injuries/pathology , Immunohistochemistry , Rats, Wistar , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...