Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biodivers Data J ; 12: e117169, 2024.
Article in English | MEDLINE | ID: mdl-38903959

ABSTRACT

Background: The InBIO Barcoding Initiative (IBI) Dataset - DS-IBILP08 contains records of 2350 specimens of moths (Lepidoptera species that do not belong to the superfamily Papilionoidea). All specimens have been morphologically identified to species or subspecies level and represent 1158 species in total. The species of this dataset correspond to about 42% of mainland Portuguese Lepidoptera species. All specimens were collected in mainland Portugal between 2001 and 2022. All DNA extracts and over 96% of the specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources. New information: The authors enabled "The InBIO Barcoding Initiative Database: DNA barcodes of Portuguese moths" in order to release the majority of data of DNA barcodes of Portuguese moths within the InBIO Barcoding Initiative. This dataset increases the knowledge on the DNA barcodes of 1158 species from Portugal belonging to 51 families. There is an increase in DNA barcodes of 205% in Portuguese specimens publicly available. The dataset includes 61 new Barcode Index Numbers. All specimens have their DNA barcodes publicly accessible through BOLD online database and the distribution data can be accessed through the Global Biodiversity Information Facility (GBIF).

2.
Biodivers Data J ; 11: e110428, 2023.
Article in English | MEDLINE | ID: mdl-37915315

ABSTRACT

Background: The BioSTP: DNA Barcoding of endemic birds from oceanic islands of the Gulf of Guinea dataset contains records of 155 bird specimens belonging to 56 species in 23 families, representing over 80% of the diversity of the breeding landbird community. All specimens were collected on Príncipe, São Tomé and Annobón Islands between 2002 and 2021 and morphologically identified to species or subspecies level by qualified ornithologists. The dataset includes all endemic species and 3/4 of the extant endemic subspecies of the islands. This dataset is the second release by BioSTP and it greatly increases the knowledge on the DNA barcodes of Gulf of Guinea birds. All DNA extractions are deposited at Associação BIOPOLIS - CIBIO, Research Center in Biodiversity and Genetic Resources. New information: The dataset includes DNA barcodes for all 29 endemic bird species and for 11 of the 15 extant endemic bird subspecies from the oceanic islands of the Gulf of Guinea. This is the first major DNA barcode set of African birds. The three endemic subspecies of Crithagrarufobrunnea, an island endemic with three allopatric populations within the Archipelago, are also represented. Additionally, we obtained DNA barcodes for 16 of the 21 non-endemic landbirds and for one vagrant (Sylviacommunis). In total, forty-one taxa were new additions to the Barcode of Life Data System (BOLD), with another 11 corresponding to under-represented taxa in BOLD. Furthermore, the submitted sequences were found to cluster in 55 Barcode Index Numbers (BINs), 37 of which were new to BOLD. All specimens have their DNA barcodes publicly accessible through BOLD online database and GenBank.

3.
Biol Rev Camb Philos Soc ; 89(1): 215-31, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23848599

ABSTRACT

Deserts and arid regions are generally perceived as bare and rather homogeneous areas of low diversity. The Sahara is the largest warm desert in the world and together with the arid Sahel displays high topographical and climatic heterogeneity, and has experienced recent and strong climatic oscillations that have greatly shifted biodiversity distribution and community composition. The large size, remoteness and long-term political instability of the Sahara-Sahel, have limited knowledge on its biodiversity. However, over the last decade, there have been an increasing number of published scientific studies based on modern geomatic and molecular tools, and broad sampling of taxa of these regions. This review tracks trends in knowledge about biodiversity patterns, processes and threats across the Sahara-Sahel, and anticipates needs for biodiversity research and conservation. Recent studies are changing completely the perception of regional biodiversity patterns. Instead of relatively low species diversity with distribution covering most of the region, studies now suggest a high rate of endemism and larger number of species, with much narrower and fragmented ranges, frequently limited to micro-hotspots of biodiversity. Molecular-based studies are also unravelling cryptic diversity associated with mountains, which together with recent distribution atlases, allows identifying integrative biogeographic patterns in biodiversity distribution. Mapping of multivariate environmental variation (at 1 km × 1 km resolution) of the region illustrates main biogeographical features of the Sahara-Sahel and supports recently hypothesised dispersal corridors and refugia. Micro-scale water-features present mostly in mountains have been associated with local biodiversity hotspots. However, the distribution of available data on vertebrates highlights current knowledge gaps that still apply to a large proportion of the Sahara-Sahel. Current research is providing insights into key evolutionary and ecological processes, including causes and timing of radiation and divergence for multiple taxa, and associating the onset of the Sahara with diversification processes for low-mobility vertebrates. Examples of phylogeographic patterns are showing the importance of allopatric speciation in the Sahara-Sahel, and this review presents a synthetic overview of the most commonly hypothesised diversification mechanisms. Studies are also stressing that biodiversity is threatened by increasing human activities in the region, including overhunting and natural resources prospection, and in the future by predicted global warming. A representation of areas of conflict, landmines, and natural resources extraction illustrates how human activities and regional insecurity are hampering biodiversity research and conservation. Although there are still numerous knowledge gaps for the optimised conservation of biodiversity in the region, a set of research priorities is provided to identify the framework data needed to support regional conservation planning.


Subject(s)
Biodiversity , Biological Evolution , Conservation of Natural Resources , Africa, Northern , Animals , Desert Climate
4.
Ecol Evol ; 2(8): 1889-902, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22957190

ABSTRACT

The Culex pipiens complex includes two widespread mosquito vector species, Cx. pipiens and Cx. quinquefasciatus. The distribution of these species varies in latitude, with the former being present in temperate regions and the latter in tropical and subtropical regions. However, their distribution range overlaps in certain areas and interspecific hybridization has been documented. Genetic introgression between these species may have epidemiological repercussions for West Nile virus (WNV) transmission. Bayesian clustering analysis based on multilocus genotypes of 12 microsatellites was used to determine levels of hybridization between these two species in Macaronesian islands, the only contact zone described in West Africa. The distribution of the two species reflects both the islands' biogeography and historical aspects of human colonization. Madeira Island displayed a homogenous population of Cx. pipiens, whereas Cape Verde showed a more intriguing scenario with extensive hybridization. In the islands of Brava and Santiago, only Cx. quinquefasciatus was found, while in Fogo and Maio high hybrid rates (∼40%) between the two species were detected. Within the admixed populations, second-generation hybrids (∼50%) were identified suggesting a lack of isolation mechanisms. The observed levels of hybridization may locally potentiate the transmission to humans of zoonotic arboviruses such as WNV.

5.
Malar J ; 10: 5, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-21223582

ABSTRACT

BACKGROUND: There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. METHODS: Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. RESULTS: Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004

Subject(s)
Anopheles/genetics , Anopheles/physiology , Genetic Variation , Animals , Anopheles/classification , Europe , Geography , Microsatellite Repeats , Wings, Animal/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...