Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 90(2): 024105, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30831747

ABSTRACT

Photochemical in situ studies in a well-controlled surface science environment can help to understand photochemical reactions in organic thin films in more detail. To perform such studies without external focusing or light guiding systems, we designed a high-intensity UV-photon source, which is compatible with an ultra-high vacuum (UHV) environment. The UV source is based on a high power light-emitting diode (LED), soldered onto a copper heat reservoir to avoid overheating. The LED can be placed in close vicinity in front of a single crystal, providing flux densities of 2 × 1018 photons s-1 cm-2 at a wavelength of 365 nm. Thus, the device provides light intensities one order of magnitude higher as compared to conventional continuous wave arc lamps, at only a small variation of the flux of less than ±20% over a sample surface of 10 × 8 mm2. The UV source is mounted in a UHV infrared reflection absorption spectroscopy system and triggered by using the IR spectrometer. This allows fully automatized in situ IR studies of photochemical reactions at interfaces and thin films. We prove the functionality of the device by studying the photochemical conversion of norbornadiene (NBD) to quadricyclane (QC) mediated by the photosensitizer 4,4'-bis(dimethylamino)benzophenone (Michler's ketone, MK). NBD and MK were grown by physical vapor deposition in the form of thin films on Pt(111) at 120 K. Even at prolonged UV irradiation (>100 s), the temperature of the sample increased by less than 10 K. We report first successful conversion of NBD to QC under UHV conditions and follow the conversion behavior as a function of the photon dose and NBD/MK ratio. Initial quantum yields of up to 23% and selectivity for a QC of 70% are obtained at NBD/MK of 7.4:1, indicating good electronic coupling between NBD and MK even in a frozen multilayer. For both very small and very large NBD loadings, the conversion efficiency decreases, which is attributed to the effect of the metallic substrate and phase separation in thick multilayers, respectively.

2.
Chemistry ; 23(59): 14806-14818, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28815946

ABSTRACT

Indole derivatives were recently proposed as potential liquid organic hydrogen carriers (LOHC) for storage of renewable energies. In this work, we have investigated the adsorption, dehydrogenation and degradation mechanisms in the indole/indoline/octahydroindole system on Pt(111). We have combined infrared reflection absorption spectroscopy (IRAS), X-ray photoelectron spectroscopy (XPS) and DFT calculations. Indole multilayers show a crystallization transition at 200 K, in which the molecules adopt a strongly tilted orientation, before the multilayer desorbs at 220 K. For indoline, a less pronounced restructuring transition occurs at 150 K and multilayer desorption is observed at 200 K. Octahydroindole multilayers desorb already at 185 K, without any indication for restructuring. Adsorbed monolayers of all three compounds are stable up to room temperature and undergo deprotonation at the NH bond above 300 K. For indoline, the reaction is followed by partial dehydrogenation at the 5-membered ring, leading to the formation of a flat-lying di-σ-indolide in the temperature range from 330-390 K. Noteworthy, the same surface intermediate is formed from indole. In contrast, the reaction of octahydroindole with Pt(111) leads to the formation of a different intermediate, which originates from partial dehydrogenation of the 6-membered ring. Above 390 K, all three compounds again form the same strongly dehydrogenated and partially decomposed surface species.

SELECTION OF CITATIONS
SEARCH DETAIL
...