Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Oncol ; 18(4): 895-917, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37798904

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft-tissue sarcomas with a poor survival rate, presenting either sporadically or in the context of neurofibromatosis type 1 (NF1). The histological diagnosis of MPNSTs can be challenging, with different tumors exhibiting great histological and marker expression overlap. This heterogeneity could be partly responsible for the observed disparity in treatment response due to the inherent diversity of the preclinical models used. For several years, our group has been generating a large patient-derived orthotopic xenograft (PDOX) MPNST platform for identifying new precision medicine treatments. Herein, we describe the expansion of this platform using six primary tumors clinically diagnosed as MPNSTs, from which we obtained six additional PDOX mouse models and three cell lines, thus generating three pairs of in vitro-in vivo models. We extensively characterized these tumors and derived preclinical models, including genomic, epigenomic, and histological analyses. Tumors were reclassified after these analyses: three remained as MPNSTs (two being classic MPNSTs), one was a melanoma, another was a neurotrophic tyrosine receptor kinase (NTRK)-rearranged spindle cell neoplasm, and, finally, the last was an unclassifiable tumor bearing neurofibromin-2 (NF2) inactivation, a neuroblastoma RAS viral oncogene homolog (NRAS) oncogenic mutation, and a SWI/SNF-related matrix-associated actin-dependent regulator of chromatin (SMARCA4) heterozygous truncated variant. New cell lines and PDOXs faithfully recapitulated histology, marker expression, and genomic characteristics of the primary tumors. The diversity in tumor identity and their specific associated genomic alterations impacted treatment responses obtained when we used the new cell lines for testing compounds against known altered pathways in MPNSTs. In summary, we present here an extension of our MPNST precision medicine platform, with new PDOXs and cell lines, including tumor entities confounded as MPNSTs in a real clinical scenario. This platform may constitute a useful tool for obtaining correct preclinical information to guide MPNST clinical trials.


Subject(s)
Nerve Sheath Neoplasms , Neurofibrosarcoma , Humans , Mice , Animals , Neurofibrosarcoma/genetics , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/pathology , Precision Medicine , Heterografts , Cell Line , DNA Helicases , Nuclear Proteins , Transcription Factors
3.
Virchows Arch ; 483(4): 487-495, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572156

ABSTRACT

Compared to other sarcomas, myxoid liposarcoma (MLS) is exceptionally sensitive to radiation therapy, but the underlying mechanism remains unknown. The objective was to assess the tissue-based changes in MLS during and after neoadjuvant radiotherapy in 26 patients of the DOREMY trial. Morphological assessment was performed on biopsies pre-treatment, after 8 fractions, 16 factions, and after surgical resection and included percentage of viable tumor cells, hyalinization, necrosis, and fatty maturation. Furthermore, immunohistochemistry was performed for apoptosis (cleaved caspase-3), anti-apoptosis (Bcl-2), activity of mTOR signaling (phospho-S6), hypoxia (CAIX), proliferation (Ki67), inflammation (CD45 and CD68), and microvessel density (CD34 Chalkley count). A pronounced reduction in vital tumor cells was observed early with a drop to 32.5% (median) tumor cells (IQR 10-93.8%) after 8 fractions. This decreased further to 10% (IQR 5-30%) after 16 fractions and 7.5% (IQR 5-15%) in the surgical specimen. All but one patient had an excellent response with < 50% remaining tumor cells. Inversely, treatment response was mainly observed as hyalinization and less often as fatty maturation. Additionally, a decrease of inflammatory cells was noticed especially during the first eight fractions. Microvessel density remained stable over time. Immunohistochemical markers for apoptosis, anti-apoptosis, activity of mTOR signaling, proliferation, and hypoxia did not show any marked changes within the remaining tumor cells during and after radiotherapy. As a modest dose of neoadjuvant radiotherapy induces profound tissue changes in MLS, mainly during the first 8 fractions, current findings might suggest that in a carefully selected patient population further deintensification of radiotherapy might be explored.


Subject(s)
Liposarcoma, Myxoid , Adult , Humans , Liposarcoma, Myxoid/radiotherapy , Neoadjuvant Therapy , Apoptosis , Hypoxia , TOR Serine-Threonine Kinases
4.
Aging Dis ; 14(3): 1013-1027, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37191411

ABSTRACT

Adult lungs present high cellular plasticity against stress and injury, mobilizing stem/progenitor populations from conducting airways to maintain tissue homeostasis and gas exchange in alveolar spaces. With aging, pulmonary functional and structural deterioration occurs, mainly in pathological conditions, which is associated with impaired stem cell activity and increased senescence in mice. However, the impact of these processes underlying lung physiopathology in relation to aging has not been explored in humans. In this work, we analyzed stem cell (SOX2, p63, KRT5), senescence (p16INK4A, p21CIP, Lamin B1) and proliferative (Ki67) markers in lung samples from young and aged individuals, with and without pulmonary pathology. We identified a reduction in SOX2+ cells but not p63+ and KRT5+ basal cells in small airways with aging. In alveoli, we revealed the presence of triple SOX2+, p63+ and KRT5+ cells specifically in aged individuals diagnosed with pulmonary pathologies. Notably, p63+ and KRT5+ basal stem cells displayed colocalization with p16INK4A and p21CIP, as well as with low Lamin B1 staining in alveoli. Further studies revealed that senescence and proliferation markers were mutually exclusive in stem cells with a higher percentage colocalizing with senescence markers. These results provide new evidence of the activity of p63+/KRT5+ stem cells on human lung regeneration and point out that regeneration machinery in human lung is activated under stress due to aging, but fails to repair in pathological cases, as stem cells would likely become senescent.

5.
Curr Opin Oncol ; 34(4): 354-361, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35730501

ABSTRACT

PURPOSE OF REVIEW: The advances of molecular techniques have led to the refinement of the classification of mesenchymal tumors, leading to newly introduced entities in the recently published fifth edition of the WHO Classification of Soft Tissue and Bone Tumors, which are discussed in this review. RECENT FINDINGS: For the first time, entities are included of which the name refers to the underlying molecular alteration including round cell sarcoma with EWSR1 -non-ETS fusions, CIC -rearranged sarcoma, and sarcoma with BCOR genetic alteration. EWSR1-SMAD3 -positive fibroblastic tumor and NTRK -rearranged spindle cell neoplasm are provisionally included as 'emerging' entities based on the underlying molecular alteration, though the entity still needs to be better defined. Other newly recognized entities are not named after their molecular change, but the molecular alteration helped to delineate them from others: atypical spindle cell/pleomorphic lipomatous tumor, anastomosing hemangioma, angiofibroma of soft tissue, myxoid pleomorphic liposarcoma, and poorly differentiated chordoma. SUMMARY: Classification of mesenchymal tumors is increasingly based on the underlying molecular changes, although this cannot be interpreted separately from clinical, morphological, and immunohistochemical characteristics.


Subject(s)
Bone Neoplasms , Sarcoma , Soft Tissue Neoplasms , Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Humans , Sarcoma/pathology , Soft Tissue Neoplasms/genetics
6.
Aging (Albany NY) ; 12(19): 18928-18941, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33049712

ABSTRACT

The presence and functional role of T cell infiltration in human brain parenchyma with normal aging and neurodegeneration is still under intense debate. Recently, CD8+ cells have been shown to infiltrate the subventricular zone in humans and mice with a deleterious effect on neural stem cells. However, to which extent T cell infiltration in humans also occurs in other regions such as cortical areas and, especially, white matter (WM) has not yet been addressed. In this work, we report a low-grade infiltration of T cells (CD3+, CD4+ and CD8+) in the WM of aged individuals that is also observed at similar levels in patients with neurodegenerative disorders (Alzheimer´s disease). In particular, CD3+ and CD8+ cells were increased in perivascular and parenchymal WM and cortical regions (enthorinal cortex). These results reveal that T cell infiltration in brain parenchyma occurs with physiological and pathological aging in several regions, but it seems to be lower than in the subventricular zone neurogenic niche.

SELECTION OF CITATIONS
SEARCH DETAIL
...