Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 327
Filter
1.
Behav Brain Res ; 476: 115269, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313072

ABSTRACT

We previously demonstrated that JM-20, a molecule with neuroactive functions, protects rats against rotenone and 6-hydroxydopamine (6-OHDA) neurotoxicity. In addition, we demonstrated that JM-20 inhibits the aggregation and cytotoxicity of alpha-synuclein in vitro. In this study, we performed correlation studies between morphological and molecular variables, as well as the motor behavior of parkinsonian rats (6-OHDA and rotenone lesion) treated with JM-20 at different doses (oral with gavage). Our results showed that higher asymmetry evaluated in the cylinder test correlated with greater redox alterations, death of dopaminergic neurons and increased astrogliosis. In the rotenone model, our results showed that a lower number of vertical rearing was correlated with greater redox alterations and increased mitochondrial dysfunction. In both models (6-OHDA and rotenone), parkinsonian animals treated with the highest doses of JM-20 (20 and 40 mg/kg) showed reduced behavioral impairments (lower asymmetry value and higher amount of vertical rearing). Also, a reduced loss of mesencephalic dopaminergic neurons, a smaller number of astrocyte cells in this region, less redox alterations and less mitochondrial dysfunction was observed. In total, our results demonstrate a correlation between behavioral and biochemical variables evaluated in the preclinical models of parkinsonism induced by 6-OHDA and rotenone.

2.
Molecules ; 29(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39275007

ABSTRACT

Agathisflavone is a flavonoid that exhibits anti-inflammatory and anti-oxidative properties. Here, we investigated the neuroprotective effects of agathisflavone on central nervous system (CNS) neurons and glia in the cerebellar slice ex vivo model of neonatal ischemia. Cerebellar slices from neonatal mice, in which glial fibrillary acidic protein (GFAP) and SOX10 drive expression of enhanced green fluorescent protein (EGFP), were used to identify astrocytes and oligodendrocytes, respectively. Agathisflavone (10 µM) was administered preventively for 60 min before inducing ischemia by oxygen and glucose deprivation (OGD) for 60 min and compared to controls maintained in normal oxygen and glucose (OGN). The density of SOX-10+ oligodendrocyte lineage cells and NG2 immunopositive oligodendrocyte progenitor cells (OPCs) were not altered in OGD, but it resulted in significant oligodendroglial cell atrophy marked by the retraction of their processes, and this was prevented by agathisflavone. OGD caused marked axonal demyelination, determined by myelin basic protein (MBP) and neurofilament (NF70) immunofluorescence, and this was blocked by agathisflavone preventative treatment. OGD also resulted in astrocyte reactivity, exhibited by increased GFAP-EGFP fluorescence and decreased expression of glutamate synthetase (GS), and this was prevented by agathisflavone pretreatment. In addition, agathisflavone protected Purkinje neurons from ischemic damage, assessed by calbindin (CB) immunofluorescence. The results demonstrate that agathisflavone protects neuronal and myelin integrity in ischemia, which is associated with the modulation of glial responses in the face of ischemic damage.


Subject(s)
Animals, Newborn , Cerebellum , Flavonoids , Neuroprotective Agents , Animals , Neuroprotective Agents/pharmacology , Mice , Cerebellum/metabolism , Cerebellum/drug effects , Flavonoids/pharmacology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Neurons/drug effects , Neurons/metabolism , Glucose/metabolism , Biflavonoids
3.
Front Vet Sci ; 11: 1448165, 2024.
Article in English | MEDLINE | ID: mdl-39135898

ABSTRACT

[This corrects the article DOI: 10.3389/fvets.2023.1266499.].

4.
Nanomedicine (Lond) ; : 1-17, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109488

ABSTRACT

Aim: Breast cancer and its metastases involve high mortality even with advances in chemotherapy. Solid lipid nanoparticles provide a platform for drug delivery, reducing side effects and treatment-induced bone loss. A solid nanoparticle containing doxorubicin was evaluated for its ability to prevent bone loss in a pre-clinical breast cancer model. Methods: We investigated the effects of SLNDox in an aggressive metastatic stage IV breast cancer model, which has some important features that are interesting for bone loss investigation. This study evaluates bone loss prevention potential from solid lipid nanoparticles containing doxorubicin breast cancer treatment, an evaluation of the attenuation of morphological changes in bone tissue caused by the treatment and the disease and an assessment of bone loss imaging using computed tomography and electron microscopy. Results: Chemotherapy-induced bone loss was also observed in tumor-free animals; a solid lipid nanoparticle containing doxorubicin prevented damage to the growth plate and to compact and cancellous bones in the femur of tumor-bearing and healthy animals. Conclusion: The association of solid lipid nanoparticles with chemotherapeutic drugs with proven efficacy promotes the prevention of serious consequences of chemotherapy, reducing tumor progression, increasing quality of life and improving prognosis and survival.


[Box: see text].

5.
J Environ Manage ; 368: 122157, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128349

ABSTRACT

With the growing concerns about the protection of ecosystem functions and services, governments have developed public policies and organizations have produced an awesome volume of digital data freely available through their websites. On the other hand, advances in data acquisition through remote sensed sources and processing through geographic information systems (GIS) and statistical tools, allowed an unprecedent capacity to manage ecosystems efficiently. However, the real-world scenario in that regard remains paradoxically challenging. The reasons can be many and diverse, but a strong candidate relates with the limited engagement among the interest parties that hampers bringing all these assets into action. The aim of the study is to demonstrate that management of ecosystem services can be significantly improved by integrating existing environmental policies with environmental big data and low-cost GIS and data processing tools. Using the Upper Rio das Velhas hydrographic basin located in the state of Minas Gerais (Brazil) as example, the study demonstrated how Principal Components Analysis based on a diversity of environmental variables assembled sub-basins into urban, agriculture, mining and heterogeneous profiles, directing management of ecosystem services to the most appropriate officially established conservation plans. The use of GIS tools, on the other hand, allowed narrowing the implementation of each plan to specific sub-basins. This optimized allocation of preferential management plans to priority areas was discussed for a number of conservation plans. A paradigmatic example was the so-called Conservation Use Potential (CUP) devoted to the protection of aquifer recharge (provision service) and control of water erosion (regulation service), as well as to the allocation of uses as function of soil capability (support service). In all cases, the efficiency gains in readiness for plans' implementation and economy of resources were prognosed as noteworthy.


Subject(s)
Conservation of Natural Resources , Ecosystem , Geographic Information Systems , Brazil , Environmental Policy
6.
Chem Biodivers ; : e202401450, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034294

ABSTRACT

Three new polyprenylated benzophenone derivatives named burlemarxione G-I (1-3) were isolated from C. burle-marxii trunks (compound 1) and leaves (compounds 2 and 3), along with the known compound burlemarxione F. Burlemarxione G (1) was isolated after methylation with diazomethane and it is the keto-enol tautomeric pair of burlemarxione F. Burlemarxione H (2) derives from burlemarxiones F and G, but it has additional rings due to cyclization of the prenyl group attached to C-5 that establishes new single bonds between C-1 and C-23, as well as, between C-24 and C-29. Burlemarxione I (3) has two additional cyclizations: the first encompasses the cyclization of the former isopentenyl group into an 11,11-dimethyl-six-membered ring, whereas the second produces additional rings due to the cyclization of the prenyl group attached to C-5 that establishes new single bonds between C-1 and C-23, as well as, between C-24 and C-29. All three compounds showed moderate anti-glioma activity. These results show that C. burle-marxii is an important source of sophisticated polyprenylated benzophenone derivatives.

7.
Med Int (Lond) ; 4(5): 46, 2024.
Article in English | MEDLINE | ID: mdl-38983795

ABSTRACT

Breast cancer (BC) is the leading cause of cancer-related mortality among women worldwide. Immunotherapies are a promising approach in cancer treatment, particularly for aggressive forms of BC with high mortality rates. However, the current eligibility for immunotherapy remains limited to a limited fraction of patients with BC. Myeloid-derived suppressor cells (MDSCs), originating from myeloid cells, are known for their dual role in immunosuppression and tumor promotion, significantly affecting patient outcomes by fostering the formation of premetastatic niches. Consequently, targeting MDSCs has emerged as a promising avenue for further exploration in therapeutic interventions. Leveraging nanotechnology-based drug delivery systems, which excel in accumulating drugs within tumors via passive or active targeting mechanisms, are a promising strategy for the use of MDSCs in the treatment of BC. The present review discusses the immunosuppressive functions of MDSCs, their role in BC, and the diverse strategies for targeting them in cancer therapy. Additionally, the present review discusses future advancements in BC treatments focusing on MDSCs. Furthermore, it elucidates the mechanisms underlying MDSC activation, recruitment and differentiation in BC progression, highlighting the clinical characteristics that render MDSCs suitable candidates for the therapy and targeted nanotherapy of BC.

8.
RSC Adv ; 14(27): 19459-19471, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38887643

ABSTRACT

This study explores the stabilization by niobic acid, of Pt, Ni, Pd, and Au nanoparticles (NPs) for the efficient microheterogeneous catalysis of NaBH4 hydrolysis for hydrogen production. Niobic acid is the most widely studied Nb2O5 polymorph, and it is employed here for the first time for this key reaction relevant to green energy. Structural insights from XRD, Raman, and FTIR spectroscopies, combined with hydrogen production data, reveal the role of niobic acid's Brønsted acidity in its catalytic activity. The supported NPs showed significantly higher efficiency than the non-supported counterparts regarding turnover frequency, average hydrogen production rate, and cost. Among the tested NPs, PtNPs and NiNPs demonstrate the most favorable results. The data imply mechanism changes during the reaction, and the kinetic isotope assay indicates a primary isotope effect. Reusability assays demonstrate consistent yields over five cycles for PtNPs, although catalytic efficiency decreases, likely due to the formation of reaction byproducts.

9.
Brain Sci ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38928557

ABSTRACT

Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.

10.
Article in English | MEDLINE | ID: mdl-38847831

ABSTRACT

Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (Thymus vulgaris) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol's anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol's impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/ß-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol's broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.

11.
Braz Oral Res ; 38: e052, 2024.
Article in English | MEDLINE | ID: mdl-38922212

ABSTRACT

The aim of this study was to evaluate the impact of oral conditions and health-related quality of life (HRQoL) on oral health-related quality of life (OHRQoL) in children and adolescents with blood coagulation disorders and hemoglobinopathies (BCDH). The study was cross-sectional and included 61 individuals aged 2 to 18 years with BCDH. Exams for dental caries (dmft/DMFT index), oral hygiene (simplified oral hygiene index - OHI-S), and gingival health (modified gingival index - MGI) were performed. The pediatric quality of life inventory™ (PedsQL™) generic core scale and oral health scale were used to measure HRQoL and OHRQoL. Spearman's correlation coefficient (ρ) and the Mann-Whitney test (α = 0.05) were conducted to assess the relationship between covariates and the PedsQL™ oral health scale. The mean PedsQL™ oral health scale score was 76.66 (SD = 21.36). Worse OHRQoL was correlated with poor oral hygiene (ρ = -0.383; p: 0.004), poor gingival health (ρ = -0.327; p = 0.014), and better HRQoL (ρ = 0.488; p < 0.001). Greater untreated dental caries experience was associated with worse OHRQoL (p = 0.009). Worse oral health status in children and adolescents with BCDH negatively impacts OHRQoL, and OHRQoL and quality of life analyzed from a generic perspective are positively correlated constructs in this population.


Subject(s)
Blood Coagulation Disorders , Dental Caries , Hemoglobinopathies , Oral Health , Quality of Life , Humans , Child , Adolescent , Female , Male , Cross-Sectional Studies , Oral Health/statistics & numerical data , Child, Preschool , Dental Caries/psychology , Hemoglobinopathies/psychology , Hemoglobinopathies/physiopathology , Hemoglobinopathies/complications , Blood Coagulation Disorders/psychology , Statistics, Nonparametric , Oral Hygiene Index , Periodontal Index , DMF Index , Surveys and Questionnaires , Socioeconomic Factors , Oral Hygiene
12.
Toxicon ; 247: 107793, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38838861

ABSTRACT

Bothrops atrox envenomations in the Brazilian Amazon are responsible for a number of local and systemic effects. Among these, stroke presents the worst prognosis for the patient since it may evolve into disabilities and/or premature death. This complication is caused by coagulation disorders and generates hemorrhagic and thrombotic conditions. This study presents a case report of a 54-year-old female patient who presented extensive cerebral ischemia after a B. atrox envenomation that occurred in the state of Amazonas, Brazil. The patient was hospitalized for 102 days, which included a stay in the intensive care unit. Clinical and laboratory findings indicated a thrombogenic coagulopathy. On discharge, the patient had no verbal response, partial motor response, and right hemiplegia. The assessment carried out four years after discharge evidenced incapacitation, global aphasia and bilateral lower and upper limbs showed hypotrophy with a global decrease in strength. Ischemic stroke is a possible complication of B. atrox snakebites even after antivenom treatment, with the potential to cause debilitating long-term consequences.


Subject(s)
Antivenins , Bothrops , Snake Bites , Snake Bites/complications , Female , Middle Aged , Animals , Humans , Brazil , Antivenins/therapeutic use , Ischemic Stroke/etiology , Crotalid Venoms/toxicity , Crotalid Venoms/poisoning , Brain Ischemia/etiology , Bothrops atrox
13.
Adv Neurotoxicol ; 11: 105-132, 2024.
Article in English | MEDLINE | ID: mdl-38770370

ABSTRACT

Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). Iron (Fe)-dependent programmed cell death known as ferroptosis, plays a crucial role in the etiology and progression of PD. Since SNpc is particularly vulnerable to Fe toxicity, a central role for ferroptosis in the etiology and progression of PD is envisioned. Ferroptosis, characterized by reactive oxygen species (ROS)-dependent accumulation of lipid peroxides, is tightly regulated by a variety of intracellular metabolic processes. Moreover, the recently characterized bi-directional interactions between ferroptosis and the gut microbiota, not only provides another window into the mechanistic underpinnings of PD but could also suggest novel interventions in this devastating disease. Here, following a brief discussion of PD, we focus on how our expanding knowledge of Fe-induced ferroptosis and its interaction with the gut microbiota may contribute to the pathophysiology of PD and how this knowledge may be exploited to provide novel interventions in PD.

14.
Res Sq ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464059

ABSTRACT

Introduction: Vaccines are essential for the prevention and control of several diseases, indeed, monitoring the immune response generated by vaccines is crucial. The immune response generated by vaccination against SARS-CoV-2 in children and adolescents is not well defined regarding to the intensity and medium to long-term duration of a protective immune response, which may point out the need of booster doses and might support the decisions in public health. Objective: The study aims to evaluate the immunogenicity and safety of inactivated SARS-CoV-2 vaccine (CoronaVac) in a two-dose primary protocol in children and adolescent aging from 3 to 17 years old in Brazil. Methods: Participants were invited to participate in the research at two public healthcare centers located in Serrana (São Paulo) and Belo Horizonte (Minas Gerais), Brazil. Participants underwent medical interviews to gather their medical history, including COVID-19 history and medical records. Physical exams were conducted, including weight, blood pressure, temperature, and pulse rate measurements. Blood samples were obtained from the participants before vaccination, 1 month after the first dose, and 1, 3, and 6 months after the second dose and were followed by a virtual platform for monitoring post-vaccination reactions and symptoms of COVID-19. SARS-CoV-2 genome from Swab samples of COVID-19 positive individuals were sequenced by NGS. Total antibodies were measured by ELISA and neutralizing antibodies to B.1 lineage and Omicron variant (BA.1) quantified by PRNT and VNT. The cellular immune response was evaluated by flow cytometry by the quantification of systemic soluble immune mediators. Results: The follow-up of 640 participants showed that the CoronaVac vaccine (Sinovac/Butantan Institute) was able to significantly induce the production of total IgG antibodies to SARS-CoV-2 and the production of neutralizing antibodies to B.1 lineage and Omicron variant. In addition, a robust cellular immune response was observed with wide release of pro-inflammatory and regulatory mediators in the early post-immunization moments. Adverse events recorded so far have been mild and transient except for seven serious adverse events reported on VigiMed. Conclusions: The results indicate a robust and sustained immune response induced by the CoronaVac vaccine in children and adolescents up to six months, providing evidences to support the safety and immunogenicity of this effective immunizer.

15.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473794

ABSTRACT

MicroRNAs (miRs) act as important post-transcriptional regulators of gene expression in glial cells and have been shown to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigated the effects of agathisflavone, a biflavonoid purified from the leaves of Cenostigma pyramidale (Tul.), on modulating the expression of miRs and inflammatory mediators in activated microglia. C20 human microglia were exposed to oligomers of the ß-amyloid peptide (Aß, 500 nM) for 4 h or to lipopolysaccharide (LPS, 1 µg/mL) for 24 h and then treated or not with agathisflavone (1 µM) for 24 h. We observed that ß-amyloid and LPS activated microglia to an inflammatory state, with increased expression of miR-146a, miR-155, IL1-ß, IL-6, and NOS2. Treatment with agathisflavone resulted in a significant reduction in miR146a and miR-155 induced by LPS or Aß, as well as inflammatory cytokines IL1-ß, IL-6, and NOS2. In cells stimulated with Aß, there was an increase in p-STAT3 expression that was reduced by agathisflavone treatment. These data identify a role for miRs in the anti-inflammatory effect of agathisflavone on microglia in models of neuroinflammation and AD.


Subject(s)
Alzheimer Disease , Biflavonoids , MicroRNAs , Humans , Biflavonoids/pharmacology , Microglia/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cytokines/metabolism , MicroRNAs/genetics , STAT3 Transcription Factor/metabolism
16.
Cells ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38534318

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Receptors, Nicotinic , Humans , Parkinson Disease/metabolism , Receptors, Nicotinic/metabolism , Neurodegenerative Diseases/metabolism , Nicotine/metabolism , Dopamine/metabolism , Astrocytes/metabolism
17.
Sci Total Environ ; 923: 171437, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447735

ABSTRACT

Human actions can damage the ecosystems and affect the services depending on them, with ample detrimental consequences. In earlier studies, the Conservation Use Potential (PCU) framework proved useful in assessing the capacity for aquifer recharge, suitable land uses and resistance to erosion at the river basin scale. On the other hand, the joint analysis of PCU and land uses allowed identifying the adequacy of current uses in relation to suitability (natural uses) in various basins. This was especially useful from the management perspective in basins with environmental conflicts, where current uses differed from suitability, because the PCU indicated how and where the conflicts should be mitigated. Besides the use as management tool, the PCU has potential to shed light over environmental issues such as ecosystem services, but that was not tempted so far. The aim of this work was therefore to bridge that knowledge gap and frame the PCU's application from the standpoint of Ecosystem Services (ES) assessment. We demonstrated how the PCU could be used to improve provision (recharge), support (sustainable agriculture) and regulation (resistance to erosion) services in a specific basin with land use conflicts (the Upper Rio das Velhas basin, located in Minas Gerais, Brazil), through the planning of suitable uses. It was noted that the studied basin is mostly composed of Very Low, Low and Medium potentials. These classes occur because steep slopes, fragile soils and lithologies with high denudation potential and low nutrient supply dominate in the basin. On the other hand, urban sprawl has a negative impact on all ES, while maintaining agricultural areas with appropriate management can effectively regulate erosion. As per the current results, the premise of using the PCU as joint management-environmental tool was fully accomplished, and is recommended a basis for public policy design and implementation in Brazil and elsewhere.

18.
J Biol Rhythms ; 39(2): 200-207, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38433444

ABSTRACT

Augmentation index and pulse wave velocity are markers of vascular compromise and independent predictors of cardiovascular risk and mortality. While the link between shift work and heightened cardiovascular risk is established, the intricate genesis of early cardiovascular outcomes in shift workers remains incompletely understood. However, there is evidence that sleep duration plays a role in this regard. Here we evaluate the association of total sleep time with pulse wave velocity, augmentation index, and central blood pressure in night shift workers. This study cross-sectionally evaluated the association of total sleep time evaluated by 10-day monitoring actigraphy with augmentation index, pulse wave velocity, and brachial and central blood pressure evaluated by oscillometry in nursing professionals, 63 shift workers (89% women; age = 45.0 ± 10.5 years), and 17 (100% women; age = 41.8 ± 15.6) day workers. There were no differences in the studied variables between shift workers and day workers. Results of correlation analysis demonstrated that pulse wave velocity, central systolic blood pressure, central diastolic blood pressure, brachial systolic blood pressure, and brachial diastolic blood pressure tended to have significant correlation with each other, while these measures did not have a significant relationship with augmentation index in both groups. However, results of adjusted restricted cubic spline analysis showed a U-shaped-curve association between total sleep time and augmentation index (p < 0.001 for trend) with a nadir at 300-360 min of total sleep time in shift workers. The present study showed that total sleep time, assessed by actigraphy, had a U-shaped association with augmentation index in shift workers, which indicated better characteristics of vascular functionality when sleep time was 5-6 h in the workers studied.


Subject(s)
Pulse Wave Analysis , Sleep Duration , Humans , Female , Adult , Middle Aged , Male , Circadian Rhythm , Blood Pressure/physiology
19.
RFO UPF ; 29(1)20240000.
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1566097

ABSTRACT

Objetivo: relatar o caso clínico de um paciente com perda de dimensão vertical de oclusão (DVO) associada à erosão dentária causada por refluxo gastroesofágico, discorrendo aspectos inerentes ao diagnóstico, planejamento, execução e tratamento reabilitador com restaurações indiretas cerâmicas. Descrição do caso clínico: Paciente de 37 anos queixou-se de desgaste dentário, que provocava dor e incômodo estético com o seu sorriso. O paciente relatou ser portador da doença do refluxo gastroesofágico e possuir dores de cabeça frequentes, e o exame clínico denotou perda da DVO. Após os protocolos fotográficos, molde e análise do exame radiográfico, determinou-se clinicamente o restabelecimento da DVO, sendo que por meio dos mock-ups, verificou-se a adaptação do paciente com relação a nova DVO. Preparos para facetas e tabletops foram realizados, seguidos de selamento imediato da dentina. A reabilitação foi iniciada pelo arco superior, sendo que para este arco, optou-se pelo fluxo analógico. Peças em dissilicato de lítio fresado e maquiado foram confeccionadas, e cimentadas com cimento resinoso dual. Para o arco inferior, foi utilizado o fluxo digital, e as peças foram obtidas por fresagem. Após a finalização da reabilitação, o paciente mostrou-se satisfeito com o tratamento, com melhora no aspecto estético-facial-dental, além das dores de cabeça. Considerações finais: O restabelecimento da DVO por meio de restaurações indiretas em pacientes com erosão dental é um procedimento previsível, desde que seja precedido de uma anamnese completa, diagnóstico da DVO por meio de restaurações provisórias e estratégias de adesão e cimentação adequadas.

20.
J Neurosurg ; 141(1): 221-229, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38306648

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) is a common procedure in neurosurgery used for the treatment of Parkinson's disease (PD) and essential tremor (ET) among other disorders. Lower urinary tract dysfunction is a common complication in PD, and this study aimed to evaluate the risk factors of postoperative urinary retention (POUR) after DBS surgery in patients with PD compared with patients with ET. Understanding the risk factors associated with this complication may help in the development of strategies to minimize its occurrence and improve patient outcomes. METHODS: The study was a retrospective analysis of patients who underwent DBS surgery for PD and ET at the University of Florida between 2010 and 2021. The surgical technique used has been described in previous articles and included a two-stage procedure, with stage 1 involving burr hole placement, microelectrode recording, and electrode implantation and stage 2 involving the placement of an implantable pulse generator (IPG). Data were collected on patient characteristics and surgical details and analyzed using univariate and mixed-linear models. Post hoc propensity score matching was used to confirm the association between subthalamic nucleus (STN)-DBS and POUR. RESULTS: The study included 350 patients (153 with PD and 197 with ET) who underwent 1086 DBS surgeries (lead implantations, IPG placement, and IPG replacements). The POUR rates were 16.6% (79/477), 5.2% (19/363), and 0.4% (1/246) for stage 1, stage 2, and IPG replacement procedures, respectively. Optimal mixed-effects logistic modeling revealed history of urinary retention (OR 9.3, p = 0.004), male sex (OR 2.7, p = 0.011), having an electrode placed or connected for the first time (OR 2.2, p = 0.014), anesthesia time (OR 1.5 for each 30-minute increase, p < 0.0001), preoperative opioid use (OR 1.4 for each additional 10 morphine milligram equivalents, p = 0.032), and Charlson Comorbidity Index (OR 1.4 per comorbidity, p = 0.017) to be significant risk factors for POUR. Having an electrode in the STN was found to be protective of POUR (propensity score-matched analysis: OR 0.2, p = 0.010). CONCLUSIONS: Most risk factors found to increase the risk of POUR in DBS are not modifiable but are still important to consider in preoperative planning. Opioid use reduction and shorter anesthesia time may be modifiable risk factors to weigh against their alternative. Targeting the STN during DBS may result in decreased rates of POUR. This highlights the potential for STN-targeted DBS in reducing POUR risk in PD and ET patients.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Postoperative Complications , Subthalamic Nucleus , Urinary Retention , Humans , Urinary Retention/etiology , Urinary Retention/epidemiology , Deep Brain Stimulation/adverse effects , Male , Female , Risk Factors , Retrospective Studies , Subthalamic Nucleus/surgery , Aged , Parkinson Disease/therapy , Parkinson Disease/surgery , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Middle Aged , Essential Tremor/surgery , Essential Tremor/therapy
SELECTION OF CITATIONS
SEARCH DETAIL