Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Arthropod Borne Dis ; 11(2): 315-330, 2017 Jun.
Article in English | MEDLINE | ID: mdl-29062856

ABSTRACT

BACKGROUND: Thymol and carvacrol have previously demonstrated larvicidal activity against Aedes aegypti (Diptera: Culicidae). In view of this fact, it was of our interest to obtain synthetic derivatives and evaluate their larvicidal activity on Ae. aegypti larvae. METHODS: Structural modifications were performed on thymol and carvacrol in an effort to understand the functional groups necessary for modulating their activities and to lead possibly to more effective larvae control agents. The derivatives were further subjected to SAR and computational studies (molecular modeling and chemometric tools (CPCA and PCA)) to extract structural information regarding their larvicidal properties. Field collected and Rockefeller populations of Ae. aegypti were used. RESULTS: Carvacrol and thymol exhibited LC50 of 51 and 58ppm for field collected larvae, respectively. Carvacrol derivatives exhibited LC50 ranging from 39 to 169ppm, while thymol derivatives exhibited LC50 ranging from 18 to 465ppm. Substitution of the acidic proton of carvacrol by esters, ethers, and acetic acid resulted in either maintenance or reduction of potency. CONCLUSION: Thymol derivatives were, to a certain extent, more efficient larvicides against Ae. aegypti than carvacrol derivatives, particularly to Rockefeller larvae. The chemometrics tools applied in this study showed that the independent variables indicate a mixed profile. Nevertheless, hydrophobic interactions increased the larvicidal activity.

2.
Inflammation ; 37(5): 1575-87, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24710701

ABSTRACT

This study aimed at synthesizing the carvacrol propionate (CP) and evaluating its pharmacological profile. CP was obtained from carvacrol and propionyl chloride through an esterification reaction. Male Swiss mice were treated with CP (25, 50, or 100 mg/kg). We evaluated the analgesic effect, mechanical hyperalgesia, and anti-inflammatory effect. Pre-treatment with CP inhibited (p<0.01 and 0.001) the formalin-induced nociception in both phases. CP inhibited (p<0.05, 0.01, and 0.001) the development of mechanical hyperalgesia. CP was able to decrease the leukocyte recruitment (p<0.001) and the amount of TNF-α (p<0.001), IL-1ß (p<0.05), and protein leakage (p<0.01) into the pleural cavity. In addition, the paw edema was inhibited by CP (p<0.05, 0.01, and 0.001). The CP attenuates nociception, mechanical hyperalgesia, and inflammation, through an inhibition of cytokines.


Subject(s)
Monoterpenes/chemical synthesis , Monoterpenes/pharmacology , Propionates/chemical synthesis , Propionates/pharmacology , Animals , Cymenes , Dose-Response Relationship, Drug , Edema/drug therapy , Edema/pathology , Male , Mice , Monoterpenes/therapeutic use , Motor Activity/drug effects , Motor Activity/physiology , Pain/drug therapy , Pain/pathology , Propionates/therapeutic use , Random Allocation
3.
Med Chem ; 10(2): 201-10, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23676010

ABSTRACT

The mosquito Aedes aegypti (Diptera, Culicidae) is the vector of yellow and dengue fever. In this study, chemometric tools, such as, Principal Component Analysis (PCA), Consensus PCA (CPCA), and Partial Least Squares Regression (PLS), were applied to a set of fifty five active compounds against Ae. aegypti larvae, which includes terpenes, cyclic alcohols, phenolic compounds, and their synthetic derivatives. The calculations were performed using the VolSurf+ program. CPCA analysis suggests that the higher weight blocks of descriptors were SIZE/SHAPE, DRY, and H2O. The PCA was generated with 48 descriptors selected from the previous blocks. The scores plot showed good separation between more and less potent compounds. The first two PCs accounted for over 60% of the data variance. The best model obtained in PLS, after validation leave-one-out, exhibited q(2) = 0.679 and r(2) = 0.714. External prediction model was R(2) = 0.623. The independent variables having a hydrophobic profile were strongly correlated to the biological data. The interaction maps generated with the GRID force field showed that the most active compounds exhibit more interaction with the DRY probe.


Subject(s)
Aedes , Insecticides/chemistry , Insecticides/pharmacology , Mosquito Control , Animals , Dose-Response Relationship, Drug , Insecticides/chemical synthesis , Larva/drug effects , Least-Squares Analysis , Models, Molecular , Molecular Structure , Principal Component Analysis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...