Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 92(3): e20191442, 2020.
Article in English | MEDLINE | ID: mdl-33111821

ABSTRACT

We report the study on the formation of the Cu2[Fe(CN)6] nanocomposite, which was obtained from copper oxide nanoparticles (CuO NPs) and Prussian Blue precursors. UV-vis analysis indicated that Cu2+ ions are released from CuO NPs, while Fe3+ ions are adsorbed onto the structure of CuO due to a sharp increase in zeta potential (from -30 to 0 mV) after the formation of the Cu2[Fe(CN)6]. Moreover, energy dispersive spectroscopy confirmed that Fe3+ ions are trapped in the CuO NPs structure. The CuO/Cu2[Fe(CN)6] nanocomposite exhibited the monoclinic and face-centered cubic phases that correspond to the CuO and Cu2[Fe(CN)6] components. Cyclic voltammetry (CV) for the Nanocomposite modified electrode revealed two well-defined redox couples at -0.073 ((E1/2)1) and 0.665 mV ((E1/2)2), attributed to the conversion of Cu2+ to Cu+ and CuFe2+ CuFe3+ pairs, respectively, which is similar to those in the CuO and Cu2[Fe(CN)6]components. Furthermore, the catalytic activity of the nanocomposite towards hydrogen was investigated through CV, where the reduction of H2O2 led to increased currents for the electrochemical process associated with the first redox pair. In contrast, for isolated materials (CuO NPs and Cu2[Fe(CN)6]), there was no significant increase in the current associated with either redox pair.


Subject(s)
Copper , Nanocomposites , Nanoparticles , Electrodes , Hydrogen Peroxide
2.
Phys Chem Chem Phys ; 13(26): 12155-62, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21643578

ABSTRACT

This paper presents studies about the molecular interactions and redox processes involved in the formation of palladium nanoparticles associated to glucose oxidase (GOx-PdNPs) in a supramolecular arrangement. The synthesis occurs in two steps, the Pd reduction and the formation of the 80 nm sized supramolecular aggregates containing multiples units of GOx associated to 3.5 nm sized PdNPs. During synthesis, GOx molecules interact with Pd salt leading to metal ion and FAD reduction probably via the thiol group of the cysteine 521 residue. For the growing of PdNPs, formic acid was necessary as a co-adjuvant reducing agent. Besides the contribution for the redox processes, GOx is also necessary for the NP stability preventing the formation of precipitates resulted from uncontrolled growing of NPs Cyclic voltammetry of the GOx-PdNPs demonstrated electroactivity of the bionanocomposite immobilized on ITO (indium-tin oxide) electrode surface and also the NP is partially blocked due to strong interaction GOx and the surface of PdNPs. Vibrational spectroscopy (FTIR) showed that significant structural changes occurred in GOx after the association to PdNP. These mechanistics and structural studies can contribute for modulation of bionanocomposites properties.


Subject(s)
Aspergillus niger/enzymology , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Nanoparticles/chemistry , Palladium/chemistry , Electrochemistry , Nanoparticles/ultrastructure , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared
3.
Phys Chem Chem Phys ; 11(25): 5086-91, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19562139

ABSTRACT

The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.


Subject(s)
Gold/chemistry , Indoles/chemistry , Nanoparticles/chemistry , Nickel/chemistry , Hydrogen Peroxide/chemistry , Isoindoles , Models, Molecular , Molecular Structure , Oxidation-Reduction , Surface Properties
4.
Inorg Chem ; 42(21): 6898-906, 2003 Oct 20.
Article in English | MEDLINE | ID: mdl-14552641

ABSTRACT

The compounds [Ru(NH(3))(5)(dtdp)](TFMS)(3), [Os(NH(3))(5)(dtdp)](TFMS)(3), [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](TFMS)(6), [(NH(3))(5)Os(dtdp)Ru(NH(3))(5)](TFMS)(3)(PF(6))(2), and [(NH(3))(5)Os(dtdp)Fe(CN)(5)] (dtdp = 4,4'-dithiodipyridine, TFMS = trifluoromethanesulfonate) have been synthesized and characterized by elemental analysis, cyclic voltammetry, electronic, vibrational, EPR, and (1)H NMR spectroscopies. Changes in the electronic and voltammetric spectra of the ion complex [Os(NH(3))(5)(dtdp)](3+) as a function of the solution pH enable us to calculate the pK(a) for the [Os(NH(3))(5)(dtdpH)](4+) and [Os(NH(3))(5)(dtdpH)](3+) acids as 3.5 and 5.5, respectively. The comparison of the above pK(a) data with that for the free ligand (pK(1) = 4.8) provides evidence for the -S-S- bridge efficiency as an electron conductor between the two pyridine rings. The symmetric complex, [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](6+), is found to exist in two geometric forms, and the most abundant form (most probably trans) has a strong conductivity through the -S-S- bridge, as is shown by EPR, which finds it to have an S = 1 spin state with a spin-spin interaction parameter of 150-200 G both in the solid sate and in frozen solution. Further the NMR of the same complex shows a large displacement of unpaired spin into the pi orbitals of the dttp ligand relative to that found in [Os(NH(3))(5)(dtdp)](3+). The comproportionation constant, K(c) = 2.0 x 10(5), for the equilibrium equation [Os(II)Os(II)] + [Os(III)Os(III)] right harpoon over left harpoon 2[Os(II)Os(III)] and the near-infrared band energy for the mixed-valence species (MMCT), [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](5+) (lambda(MMCT) = 1665 nm, epsilon = 3.5 x 10(3) M(-)(1) cm(-)(1), deltanu(1/2) = 3.7 x 10(3) cm(-)(1), alpha = 0.13, and H(AB) = 7.8 x 10(2) cm(-)(1)), are quite indicative of strong electron delocalization between the two osmium centers. The electrochemical and spectroscopic data for the unsymmetrical binuclear complexes [(NH(3))(5)Os(III)(dtdp)Ru(II)(NH(3))(5)](5+) (lambda(MMCT) = 965 nm, epsilon = 2.2 x 10(2) M(-)(1) cm(-)(1), deltanu(1/2) = 3.0 x 10(3) cm(-)(1), and H(AB) = 2.2 x 10(2) cm(-)(1)) and [(NH(3))(5)Os(III)(dtdp)Fe(II)(CN)(5)] (lambda(MMCT) = 790 nm, epsilon = 7.5 x 10 M(-)(1) cm(-)(1), deltanu(1/2) = 5.4 x 10(3) cm(-)(1), and H(AB) = 2.0 x 10(2) cm(-)(1)) also suggest a considerable electron delocalization through the S-S bridge. As indicated by a comparison of K(c) and energy of the MMCT process in the iron, ruthenium, and osmium complexes, the electron delocalization between the two metal centers increases in the following order: Fe < Ru < Os.

SELECTION OF CITATIONS
SEARCH DETAIL
...